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Recall some basic spectral graph theoretic terminology

Let G = (V (G),E(G)) be a simple graph with vertex set V (G) = {v1, v2, · · · , vn}.
If two vertices vi and vj are connected by an edge, then we write vi ∼ vj and the
edge between them is ei,j

The degree of a vertex vj is d(vj ) which is the number of vertices adjacent to vj .

The maximum vertex degree of G is ∆(G) := max{d(vj ) : j = 1, 2, · · · , n}.
Simply write ∆.

Degree matrix of G is D(G) := diag(d(v1), d(v2), · · · , d(vn)).

Adjacency matrix A(G) of G is an (n× n) symmetric matrix whose (i, j)th entry is
defined as follows:

A(G)ij =

{
1 if vi ∼ vj ,

0 otherwise.

The nullity of G, denoted by η(G), is the nullity of A(G) which is the multiplicity of
zero eigenvalue of A(G).
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It is known that Q(G) := D(G) + A(G) is the signless Laplacian matrices of G.

Nikiforov introduced the Aα-matrix of G, which is a convex combination of D(G)
and A(G), defined as

Aα(G) = αD(G) + (1− α)A(G), α ∈ [0, 1].

Applicable Analysis and Discrete Mathematics, 2017.

It is obvious that A0(G) = A(G), A 1
2

(G) = 1
2 Q(G) and A1(G) is D(G).

Let mα(G, λ) denotes the multiplicity of λ as an eigenvalue of Aα(G), for α ∈ [0, 1).

Particularly, m0(G, 0) = η(G).
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T-gain graph

Let G be an undirected graph with V (G) = {v1, v2, · · · , vn} and edge set E(G)

An oriented edge from vs to vt is denoted by −→es,t

Each undirected edge es,t ∈ E(G) is associated with a pair of opposite oriented
edges −→es,t and −→et,s

Consider the collection
−−−→
E(G) := {−→es,t ,

−→et,s : es,t ∈ E(G)}.

Let T = {z ∈ C : |z| = 1}

A gain function on G is a mapping ϕ :
−−−→
E(G)→ T such that ϕ(

−→es,t ) = ϕ(
−→et,s)−1,

for every es,t ∈ E(G).

A complex unit gain graph (or T-gain graph) on an underlying graph G is a graph
(G, ϕ) together with a gain function ϕ. It is denoted by Φ. That is Φ = (G, ϕ).

Nathan Reff, Linear Algebra Appl. 2012.
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T-gain adjacency matrix

The adjacency matrix of a T-gain graph Φ = (G, ϕ) is a Hermitian matrix,
denoted by A(Φ) and its (s, t)th entry is defined as follows:

A(Φ)st =

{
ϕ(
−→es,t ) if vs ∼ vt ,

0 otherwise.

We can observed that adjacency matrix of undirected graph, adjacency matrix of
signed graph and Hermitian adjacency matrix of digraph can be considered as
A(Φ), where the gains ϕ are from the set {1}, {1,−1} and {1,±i}, respectively.
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Example: T-gain adjacency matrix

Figure: Graph G

12 / 40



Example: T-gain adjacency matrix

Where, A(Φ1) =

 0 i e
iπ
4

−i 0 e
iπ
3

e−
iπ
4 e−

iπ
3 0

 A(Φ2) =

 0 e
iπ
3 e

iπ
6

e−
iπ
3 0 1

e−
iπ
6 1 0
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Aα-matrix of T-gain graph

Nikiforov introduced Aα-matrix of a graph G. In an unified approach, Aα-matrix of
a T-gain graph Φ is defined as follows:

Aα(Φ) = αD(Φ) + (1− α)A(Φ), α ∈ [0, 1].

It is obvious that A0(Φ) = A(Φ).

Let mα(Φ, λ) denotes the multiplicity of λ as an eigenvalue of Aα(Φ), for
α ∈ [0, 1).

Particularly, m0(Φ, 0) = η(Φ).
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Now we consider the problem in more general setup.

Nullity is the multiplicity of zero eigenvalue. Now, we are looking for multiplicity
of any arbitrary eigenvalue.
Since A(G) is a particular case of Aα(G), so we consider Aα(G).

One immediate result.

(5) Let mα(G, λ) be the multiplicity of λ as an eigenvalue of Aα(G). Then

mα(G, λ) ≤ (∆− 2)n + 2
∆− 1

, with characterization of equality.

Long Wanga, Xianwen Fanga, Xianya Genga, Fenglei Tianb,
Linear Algebra Appl. 2019

Remark: m0(G, 0) = η(G), above result is a generalization.
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Let Φ = (G, ϕ) be a connected T-gain graph.

A(Φ) and D(Φ) are the adjacency matrix and degree matrix of Φ, respectively.

Then Aα(Φ) := αD(Φ) + (1− α)A(Φ), for α ∈ [0, 1].

mα(Φ, λ) is the multiplicity of λ as an eigenvalue of Aα(Φ), where α ∈ [0, 1).

It is clear that m0(Φ, 0) = η(Φ).

(6) For T-gain graph Φ, η(Φ) ≤ (∆−1)n
∆

, with characterization of equality.

Yong Lu, Jingwen Wu, Linear Algebra Appl. 2020
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Theorem (A. Samanta, M. Rajesh Kannan, 2021)
Let Φ = (G, ϕ) be a connected T-gain graph of n vertices with maximum vertex degree
∆ ≥ 2. If mα(Φ, λ) is the multiplicity of λ as an Aα-eigenvalue of Φ, where α ∈ [0, 1),
then

mα(Φ, λ) ≤ (∆− 2)n + 2
(∆− 1)

. (1)

Charecterization (A. Samanta, M. Rajesh Kannan, 2021)
Equality occurs in (1) if and only if one of the following holds:

(i) Φ ∼ (K n
2 ,

n
2
, 1) and λ = αn

2 .

(ii) Φ = (Cn, ϕ) with ϕ(Cn) = 1 and
λ ∈

{
2α + 2(1− α) cos

(
2πj
n

)
: j = 0, 1, . . . , d n

2 e − 1
}

.

(iii) Φ = (Cn, ϕ) with ϕ(Cn) = −1 and
λ ∈

{
2α + 2(1− α) cos

(
(2j+1)π

n

)
: j = 0, 1, . . . , b n

2 c − 1
}

.

(iv) Φ = (Kn, ϕ) with µ ∈ σ(Φ) has multiplicity (n − 1) and λ = α(n − 1) + (1− α)µ.
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The following are the main significance of the above Theorem.

Particular case of the above Theorem improve the Result (6).

The above Theorem extend the Result (5) for T-gain graphs.

Particular case of the above Theorem simplify the proof of the Result (5).
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Sketch of the Proof

Let Φ = (G, ϕ) be a connected T-gain graph with vertices V (Φ) = {v1, v2, · · · , vn} and
maximum vertex degree ∆ ≥ 2.

Key ideas: Zero forcing number Z (G)
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Zero forcing set

The notion of a zero-forcing set of a simple graph G was introduced in
AIM Minimum Rank-Special Graphs Work Group, Linear Algebra Appl. 2008.

Color-change rule: Let G be a simple graph such that each vertex of G is colored
either black or red. Suppose vertex vi is a black vertex and exactly one neighbor vj

of vi is red among all other neighbors. Then change the color of vj to black.

The derived coloring of a given coloring of G is the resulting coloring after
applying the color-change rule such that no more changes are possible.

A subset Z of the vertex set of G is called a zero forcing set of G, if initially the
vertices of Z are all colored black and the remaining vertices are colored red, the
derived coloring of G are all black.
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Counter example of zero forcing set
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Derived coloring
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Example of Zero forcing set
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Zero forcing number: Z (G) := min
Z

|Z | over all zero forcing set Z

Let us present the following immediate result.

(6) For any connected G with ∆ ≥ 2,

Z (G) ≤ (∆− 2)n + 2
(∆− 1)

Equality occur if and only if G is either Cn, or Kn, or K n
2 ,

n
2
.

Michael Gentner at el., Discrete Appl. Math 2016.
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Sketch of the Proof

Let Φ = (G, ϕ) be a connected T-gain graph with vertices V (Φ) = {v1, v2, · · · , vn} and
maximum vertex degree ∆.

Key ideas: Zero forcing number Z (G), Z (G) ≤ (∆−2)n+2
(∆−1)

Define M(Φ) := max{η(B) : B ∈ H(Φ)}.
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Construction of H(Φ):

Let Hn denote the set of all Hermitian matrices of order n.
For B ∈ Hn, define the matrix G(B) as follows:

G(B)ij =

{ Bij
|Bij |

if Bij 6= 0,

0 otherwise.

Let Φ = (G, ϕ) be any T-gain graph of n vertices.

A matrix B = (Bij ) ∈ Hn is a matrix of type Φ if G(B)ij = A(Φ)ij for all i 6= j .

H(Φ) := {B ∈ Hn : B is of type Φ}.

Let η(B) be the nullity of the matrix B.

Define M(Φ) := max{η(B) : B ∈ H(Φ)}.

Particularly, η(A(Φ)) ≤ M(Φ).
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Sketch of the Proof

Key ideas: Zero forcing number Z (G), Z (G) ≤ (∆−2)n+2
(∆−1)

Define M(Φ) := max{η(B) : B ∈ H(Φ)}, then η(B) ≤ M(Φ), where B is of type Φ.

Then M(Φ) ≤ Z (G)
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We use few more results. For y = (y1, y2, . . . , yn) ∈ Cn, the support of y is the set of
indices j such that yj 6= 0, and is denoted by supp(y). For real symmetric metrics, the
following two results are known.

Lemma 1
Let Φ be any T-gain graph, and Z be a zero forcing set of Φ. Let B ∈ H(Φ) and
y ∈ Ker B with supp(y) ∩ Z = φ. Then y = 0.

Proof: Let V (Φ) be the vertex set of Φ. If Z = V (Φ), then y = 0.
Suppose Z ⊂ V (Φ). Since Z is a zero forcing set, so all the white vertices in V (Φ) \ Z
can be colored black by color change rule. Let vi ∈ Z be such that it has exactly one
red neighbour vertex vt .
Then the i-th entry (By)i = Biiyi +

∑
vi∼vj

Bijyj = Bityt = 0. Then yt = 0. As Z is a zero

forcing set, so all the components of y associated with white vertices are zero. Hence
y = 0.

Remark: Significance of the name " Zero forcing set "
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indices j such that yj 6= 0, and is denoted by supp(y). For real symmetric metrics, the
following two results are known.

Lemma 1
Let Φ be any T-gain graph, and Z be a zero forcing set of Φ. Let B ∈ H(Φ) and
y ∈ Ker B with supp(y) ∩ Z = φ. Then y = 0.

Proof: Let V (Φ) be the vertex set of Φ. If Z = V (Φ), then y = 0.
Suppose Z ⊂ V (Φ). Since Z is a zero forcing set, so all the white vertices in V (Φ) \ Z
can be colored black by color change rule. Let vi ∈ Z be such that it has exactly one
red neighbour vertex vt .
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Recall the following result.

(7) Let B be any square matrix on some field with η(B) > s. Then there exists a
non-zero vector y ∈ Ker(B) vanishing at s specified positions.

AIM Minimum Rank-Special Graphs Work Group, Linear Algebra Appl. 2008

Lemma 2
Let Φ = (G, ϕ) be any T-gain graph. Then M(Φ) ≤ Z (G).

Proof: Let Z be a zero forcing set of Φ.
Suppose that M(Φ) > |Z |.
Then there exists a matrix B ∈ H(Φ) such that η(B) > |Z |. Therefore, by above result,
there exist a nonzero y ∈ Ker(B) such that supp(y) ∩ Z = φ.
By Lemma 1, we get y = 0, a contradiction. Thus M(Φ) ≤ |Z |, and hence
M(Φ) ≤ Z (G).
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Sketch of the Proof

Key ideas: Zero forcing number Z (G), Z (G) ≤ (∆−2)n+2
(∆−1)

Define M(Φ) := max{η(B) : B ∈ H(Φ)}, then η(B) ≤ M(Φ), where B is of type Φ.

Then M(Φ) ≤ Z (G)

For α ∈ [0, 1), Aα(Φ) = αD(Φ) + (1− α)A(Φ).

Let λ ∈ σ(Aα(Φ)). Consider B := (Aα(Φ)− λI). Therefore η(B) = mα(Φ, λ).

Now G(B)ij =
Bij
|Bij |

=
(1−α)A(Φ)ij
|(1−α)||A(Φ)ij |

= A(Φ)ij , for i 6= j and α ∈ [0, 1). Thus
B ∈ H(Φ).

Therefore, η(B) ≤ M(Φ). Combining all

mα(Φ, λ) = η(B) ≤ M(Φ) ≤ Z (G) ≤ (∆− 2)n + 2
∆− 1

.
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Characterization of equality:

If mα(Φ, λ) = (∆−2)n+2
∆−1 , then Z (G) = (∆−2)n+2

∆−1 . By result (6), G is either K n
2 ,

n
2

or Kn or
Cn.

Case 1: Suppose Φ = (K n
2 ,

n
2
, ϕ). Then mα(Φ, λ) = (∆−2)n+2

∆−1 = n − 2. Therefore, there
is an eigenvalue µ of A(Φ) with multiplicity (n − 2) such that λ = αn

2 + (1− α)µ.

Since Φ is bipartite, the eigenvalues are symmetric about origin.

Then µ = 0. Therefore r(Φ) = 2

Let (C4, ϕ) be an induced 4-cycle in Φ.

2 ≤ r(C4, ϕ) ≤ r(Φ) = 2, so r(C4, ϕ) = 2.

Then ϕ(C4) = 1. Therefore, any 4-cycle in Φ is neutral.

Let us take an arbitrary cycle C2k ≡ v1 − v2 − · · · − v2k .

𝐶4

𝐶4

𝒗𝟐

𝒗𝟏

𝒗𝟑 𝒗𝟒

𝒗𝟓

𝒗𝟔
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Case 1: Suppose Φ = (K n
2 ,

n
2
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Let us take an arbitrary cycle C2k ≡ v1 − v2 − · · · − v2k .

ϕ(
−→
C2k ) = ϕ(

−−→e1,2)ϕ(
−−→e2,3) · · ·ϕ(

−−−−−−→e(2k−1),2k )

= {ϕ(
−−→e1,2)ϕ(

−−→e2,3)ϕ(
−−→e3,4)ϕ(

−−→e4,1)}

{ϕ(
−−→e1,4)ϕ(

−−→e4,5)ϕ(
−−→e5,6)ϕ(

−−→e6,1)}
...

{ϕ(
−−−−−→e1,(2k−2))ϕ(

−−−−−−−−→e(2k−2),(2k−1))ϕ(
−−−−−−→e(2k−1),2k )ϕ(

−−→e2k,1)}
= 1.

Therefore Φ ∼ (K n
2 ,

n
2
, 1) and λ = αn

2 . Thus statement (i) holds.
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Case 2: Suppose Φ = (Kn, ϕ) and mα(Φ, λ) = (∆−2)n+2
∆−1 . Then mα(Φ, λ) = n − 1.

Therefore, λ is an eigenvalue of Aα(Φ) with multiplicity (n− 1). Therefore, A(Φ) has an
eigenvalue µ with multiplicity (n − 1). Statement (ii) holds.

Case 3: Suppose Φ = (Cn, ϕ) and mα(Φ, λ) = (∆−2)n+2
∆−1 . Then mα(Φ, λ) = 2.

Therefore by some known results, either statement (iii) or statement (iv) holds.
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Another improved bound:

Theorem (A. Samanta, M. Rajesh Kannan, 2021)
Let Φ be any connected T-gain graph with n vertices and the maximum vertex degree
∆ ≥ 3. Then

η(Φ) ≤ n(∆− 2)

∆− 1
equality holds if and only if Φ /∈ {(K n

2 ,
n
2
, 1), (K n+1

2 , n−1
2
, 1)}.
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Problem
One can consider a problem to find better bound of η(G) in terms of n and ∆ by
excluding some particular graphs.
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