On the multiplicity of A_{α}-eigenvalues for \mathbb{T}-gain graphs

Aniruddha Samanta
Research Scholar

Department of Mathematics,
Indian Institute of Technology Kharagpur, Kharagpur, India.

Outline

- Introduction \& Preliminaries
- Literature survey
- Our contribution
- References

Introduction \& Preliminaries

Spectral graph theory

Spectral graph theory

Dealing with Graphs and Matrices

Spectral graph theory

Dealing with Graphs and Matrices

Matrices associated with graphs:

Adjacency Matrix
Incidence Matrix
Laplacian Matrix
Distance Matrix, and many more.

Spectral graph theory

Dealing with Graphs and Matrices

Matrices associated with graphs:

Adjacency Matrix
Incidence Matrix
Laplacian Matrix
Distance Matrix, and many more.

New class of adjacency matrix
A_{α}-matrix of \mathbb{T}-gain graph

New class of adjacency matrix

A_{α}-matrix of \mathbb{T}-gain graph
A generalization of adjacency matrix

New class of adjacency matrix
 A_{α}-matrix of \mathbb{T}-gain graph
 A generalization of adjacency matrix

Main aim:

How is the multiplicity of an eigenvalue related to n and Δ for such matrices?

What is A_{α}-matrix of a \mathbb{T}-gain graph ?

What is A_{α}-matrix of a \mathbb{T}-gain graph ?

Why is this a generalization of adjacency matrix ?

Recall some basic spectral graph theoretic terminology

- Let $G=(V(G), E(G))$ be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. If two vertices v_{i} and v_{j} are connected by an edge, then we write $v_{i} \sim v_{j}$ and the edge between them is $e_{i, j}$

Recall some basic spectral graph theoretic terminology

- Let $G=(V(G), E(G))$ be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. If two vertices v_{i} and v_{j} are connected by an edge, then we write $v_{i} \sim v_{j}$ and the edge between them is $e_{i, j}$
- The degree of a vertex v_{j} is $d\left(v_{j}\right)$ which is the number of vertices adjacent to v_{j}.

Recall some basic spectral graph theoretic terminology

- Let $G=(V(G), E(G))$ be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. If two vertices v_{i} and v_{j} are connected by an edge, then we write $v_{i} \sim v_{j}$ and the edge between them is $e_{i, j}$
- The degree of a vertex v_{j} is $d\left(v_{j}\right)$ which is the number of vertices adjacent to v_{j}.
- The maximum vertex degree of G is $\Delta(G):=\max \left\{d\left(v_{j}\right): j=1,2, \cdots, n\right\}$. Simply write Δ.

Recall some basic spectral graph theoretic terminology

- Let $G=(V(G), E(G))$ be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. If two vertices v_{i} and v_{j} are connected by an edge, then we write $v_{i} \sim v_{j}$ and the edge between them is $e_{i, j}$
- The degree of a vertex v_{j} is $d\left(v_{j}\right)$ which is the number of vertices adjacent to v_{j}.
- The maximum vertex degree of G is $\Delta(G):=\max \left\{d\left(v_{j}\right): j=1,2, \cdots, n\right\}$. Simply write Δ.
- Degree matrix of G is $D(G):=\operatorname{diag}\left(d\left(v_{1}\right), d\left(v_{2}\right), \cdots, d\left(v_{n}\right)\right)$.

Recall some basic spectral graph theoretic terminology

- Let $G=(V(G), E(G))$ be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. If two vertices v_{i} and v_{j} are connected by an edge, then we write $v_{i} \sim v_{j}$ and the edge between them is $e_{i, j}$
- The degree of a vertex v_{j} is $d\left(v_{j}\right)$ which is the number of vertices adjacent to v_{j}.
- The maximum vertex degree of G is $\Delta(G):=\max \left\{d\left(v_{j}\right): j=1,2, \cdots, n\right\}$. Simply write Δ.
- Degree matrix of G is $D(G):=\operatorname{diag}\left(d\left(v_{1}\right), d\left(v_{2}\right), \cdots, d\left(v_{n}\right)\right)$.
- Adjacency matrix $A(G)$ of G is an $(n \times n)$ symmetric matrix whose (i, j) th entry is defined as follows:

$$
A(G)_{i j}= \begin{cases}1 & \text { if } v_{i} \sim v_{j}, \\ 0 & \text { otherwise }\end{cases}
$$

Recall some basic spectral graph theoretic terminology

- Let $G=(V(G), E(G))$ be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. If two vertices v_{i} and v_{j} are connected by an edge, then we write $v_{i} \sim v_{j}$ and the edge between them is $e_{i, j}$
- The degree of a vertex v_{j} is $d\left(v_{j}\right)$ which is the number of vertices adjacent to v_{j}.
- The maximum vertex degree of G is $\Delta(G):=\max \left\{d\left(v_{j}\right): j=1,2, \cdots, n\right\}$. Simply write Δ.
- Degree matrix of G is $D(G):=\operatorname{diag}\left(d\left(v_{1}\right), d\left(v_{2}\right), \cdots, d\left(v_{n}\right)\right)$.
- Adjacency matrix $A(G)$ of G is an $(n \times n)$ symmetric matrix whose (i, j) th entry is defined as follows:

$$
A(G)_{i j}= \begin{cases}1 & \text { if } v_{i} \sim v_{j}, \\ 0 & \text { otherwise }\end{cases}
$$

- The nullity of G, denoted by $\eta(G)$, is the nullity of $A(G)$ which is the multiplicity of zero eigenvalue of $A(G)$.
- It is known that $Q(G):=D(G)+A(G)$ is the signless Laplacian matrices of G.
- It is known that $Q(G):=D(G)+A(G)$ is the signless Laplacian matrices of G.
- Nikiforov introduced the A_{α}-matrix of G, which is a convex combination of $D(G)$ and $A(G)$, defined as

$$
A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G), \quad \alpha \in[0,1] .
$$

Applicable Analysis and Discrete Mathematics, 2017.

- It is known that $Q(G):=D(G)+A(G)$ is the signless Laplacian matrices of G.
- Nikiforov introduced the A_{α}-matrix of G, which is a convex combination of $D(G)$ and $A(G)$, defined as

$$
A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G), \quad \alpha \in[0,1] .
$$

Applicable Analysis and Discrete Mathematics, 2017.

- It is obvious that $A_{0}(G)=A(G), A_{\frac{1}{2}}(G)=\frac{1}{2} Q(G)$ and $A_{1}(G)$ is $D(G)$.
- It is known that $Q(G):=D(G)+A(G)$ is the signless Laplacian matrices of G.
- Nikiforov introduced the A_{α}-matrix of G, which is a convex combination of $D(G)$ and $A(G)$, defined as

$$
A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G), \quad \alpha \in[0,1] .
$$

Applicable Analysis and Discrete Mathematics, 2017.

- It is obvious that $A_{0}(G)=A(G), A_{\frac{1}{2}}(G)=\frac{1}{2} Q(G)$ and $A_{1}(G)$ is $D(G)$.
- Let $m_{\alpha}(G, \lambda)$ denotes the multiplicity of λ as an eigenvalue of $A_{\alpha}(G)$, for $\alpha \in[0,1)$.

Particularly, $m_{0}(G, 0)=\eta(G)$.

\mathbb{T}-gain graph

\mathbb{T}-gain graph

- Let G be an undirected graph with $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and edge set $E(G)$

\mathbb{T}-gain graph

- Let G be an undirected graph with $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and edge set $E(G)$
- An oriented edge from v_{s} to v_{t} is denoted by $\overrightarrow{e_{s, t}}$

\mathbb{T}-gain graph

- Let G be an undirected graph with $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and edge set $E(G)$
- An oriented edge from v_{s} to v_{t} is denoted by $\overrightarrow{e_{s, t}}$
- Each undirected edge $e_{s, t} \in E(G)$ is associated with a pair of opposite oriented edges $\overrightarrow{e_{s, t}}$ and $\overrightarrow{e_{t, s}}$

\mathbb{T}-gain graph

- Let G be an undirected graph with $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and edge set $E(G)$
- An oriented edge from v_{s} to v_{t} is denoted by $\overrightarrow{e_{s, t}}$
- Each undirected edge $e_{s, t} \in E(G)$ is associated with a pair of opposite oriented edges $\overrightarrow{e_{s, t}}$ and $\overrightarrow{e_{t, s}}$
- Consider the collection $\overrightarrow{E(G)}:=\left\{\overrightarrow{e_{s, t}}, \overrightarrow{e_{t, s}}: e_{s, t} \in E(G)\right\}$.

\mathbb{T}-gain graph

- Let G be an undirected graph with $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and edge set $E(G)$
- An oriented edge from v_{s} to v_{t} is denoted by $\overrightarrow{e_{s, t}}$
- Each undirected edge $e_{s, t} \in E(G)$ is associated with a pair of opposite oriented edges $\overrightarrow{e_{s, t}}$ and $\overrightarrow{e_{t, s}}$
- Consider the collection $\overrightarrow{E(G)}:=\left\{\overrightarrow{e_{s, t}}, \overrightarrow{e_{t, s}}: e_{s, t} \in E(G)\right\}$.
- Let $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$

\mathbb{T}-gain graph

- Let G be an undirected graph with $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and edge set $E(G)$
- An oriented edge from v_{s} to v_{t} is denoted by $\overrightarrow{e_{s, t}}$
- Each undirected edge $e_{s, t} \in E(G)$ is associated with a pair of opposite oriented edges $\overrightarrow{e_{s, t}}$ and $\overrightarrow{e_{t, s}}$
- Consider the collection $\overrightarrow{E(G)}:=\left\{\overrightarrow{e_{s, t}}, \overrightarrow{e_{t, s}}: e_{s, t} \in E(G)\right\}$.
- Let $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$
- A gain function on G is a mapping $\varphi: \overrightarrow{E(G)} \rightarrow \mathbb{T}$ such that $\varphi\left(\overrightarrow{e_{s, t}}\right)=\varphi\left(\overrightarrow{e_{t, s}}\right)^{-1}$, for every $e_{s, t} \in E(G)$.

\mathbb{T}-gain graph

- Let G be an undirected graph with $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and edge set $E(G)$
- An oriented edge from v_{s} to v_{t} is denoted by $\overrightarrow{e_{s, t}}$
- Each undirected edge $e_{s, t} \in E(G)$ is associated with a pair of opposite oriented edges $\overrightarrow{e_{s, t}}$ and $\overrightarrow{e_{t, s}}$
- Consider the collection $\overrightarrow{E(G)}:=\left\{\overrightarrow{e_{s, t}}, \overrightarrow{e_{t, s}}: e_{s, t} \in E(G)\right\}$.
- Let $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$
- A gain function on G is a mapping $\varphi: \overrightarrow{E(G)} \rightarrow \mathbb{T}$ such that $\varphi\left(\overrightarrow{e_{s, t}}\right)=\varphi\left(\overrightarrow{e_{t, s}}\right)^{-1}$, for every $e_{s, t} \in E(G)$.
- A complex unit gain graph (or \mathbb{T}-gain graph) on an underlying graph G is a graph (G, φ) together with a gain function φ. It is denoted by Φ. That is $\Phi=(G, \varphi)$.

Nathan Reff, Linear Algebra Appl. 2012.

Example: \mathbb{T}-gain graphs

Underlying graph

Example: \mathbb{T}-gain graphs

Underlying graph

Example: \mathbb{T}-gain graphs

Example: \mathbb{T}-gain graphs

\mathbb{T}-gain adjacency matrix

\mathbb{T}-gain adjacency matrix

- The adjacency matrix of a \mathbb{T}-gain graph $\Phi=(G, \varphi)$ is a Hermitian matrix, denoted by $A(\Phi)$ and its ($s, t)$ th entry is defined as follows:

$$
A(\Phi)_{s t}= \begin{cases}\varphi\left(\overrightarrow{e_{s, t}}\right) & \text { if } v_{s} \sim v_{t} \\ 0 & \text { otherwise }\end{cases}
$$

\mathbb{T}-gain adjacency matrix

- The adjacency matrix of a \mathbb{T}-gain graph $\Phi=(G, \varphi)$ is a Hermitian matrix, denoted by $A(\Phi)$ and its ($s, t)$ th entry is defined as follows:

$$
A(\Phi)_{s t}= \begin{cases}\varphi\left(\overrightarrow{e_{s, t}}\right) & \text { if } v_{s} \sim v_{t} \\ 0 & \text { otherwise }\end{cases}
$$

- We can observed that adjacency matrix of undirected graph, adjacency matrix of signed graph and Hermitian adjacency matrix of digraph can be considered as $A(\Phi)$, where the gains φ are from the set $\{1\},\{1,-1\}$ and $\{1, \pm i\}$, respectively.

Example: \mathbb{T}-gain adjacency matrix

Figure: Graph G

Example: \mathbb{T}-gain adjacency matrix

Underlying graph

Where, $A\left(\Phi_{1}\right)=\left(\begin{array}{ccc}0 & i & e^{\frac{i \pi}{4}} \\ -i & 0 & e^{\frac{i \pi}{3}} \\ e^{-\frac{i \pi}{4}} & e^{-\frac{i \pi}{3}} & 0\end{array}\right) \quad A\left(\Phi_{2}\right)=\left(\begin{array}{ccc}0 & e^{\frac{i \pi}{3}} & e^{\frac{i \pi}{6}} \\ e^{-\frac{i \pi}{3}} & 0 & 1 \\ e^{-\frac{i \pi}{6}} & 1 & 0\end{array}\right)$

A_{α}-matrix of \mathbb{T}-gain graph

A_{α}-matrix of \mathbb{T}-gain graph

- Nikiforov introduced A_{α}-matrix of a graph G. In an unified approach, A_{α}-matrix of a \mathbb{T}-gain graph Φ is defined as follows:

$$
\boldsymbol{A}_{\alpha}(\Phi)=\alpha D(\Phi)+(1-\alpha) A(\Phi), \quad \alpha \in[0,1] .
$$

It is obvious that $A_{0}(\Phi)=A(\Phi)$.

A_{α}-matrix of \mathbb{T}-gain graph

- Nikiforov introduced A_{α}-matrix of a graph G. In an unified approach, A_{α}-matrix of a \mathbb{T}-gain graph Φ is defined as follows:

$$
\boldsymbol{A}_{\alpha}(\Phi)=\alpha D(\Phi)+(1-\alpha) A(\Phi), \quad \alpha \in[0,1] .
$$

It is obvious that $A_{0}(\Phi)=A(\Phi)$.

- Let $m_{\alpha}(\Phi, \lambda)$ denotes the multiplicity of λ as an eigenvalue of $A_{\alpha}(\Phi)$, for $\alpha \in[0,1)$.

Particularly, $m_{0}(\Phi, 0)=\eta(\Phi)$.
$\boldsymbol{A}(\boldsymbol{G})$
Undirected graph

T-gain graph $\quad \boldsymbol{A}(\boldsymbol{\Phi})$

Literature survey

How is $m_{\alpha}(\Phi, \lambda)$ related to n and Δ ?
(1) For undirected Tree $T, \eta(T) \leq n-2\left\lceil\frac{n-2}{\Delta}\right\rceil$, with characterization of equality. Stanley Fiorini, Ivan Gutman, Irene Sciriha, Linear Algebra Appl. 2005
(1) For undirected Tree $T, \eta(T) \leq n-2\left\lceil\frac{n-2}{\Delta}\right\rceil$, with characterization of equality. Stanley Fiorini, Ivan Gutman, Irene Sciriha, Linear Algebra Appl. 2005
(2) For bipartite graph $G, \eta(G) \leq n-2-2 \ln _{2} \Delta$
Y.Song, X. Song, C. Zhang, Linear Multilinear Algebra. 2016.
(1) For undirected Tree $T, \eta(T) \leq n-2\left\lceil\frac{n-2}{\Delta}\right\rceil$, with characterization of equality. Stanley Fiorini, Ivan Gutman, Irene Sciriha, Linear Algebra Appl. 2005
(2) For bipartite graph $G, \eta(G) \leq n-2-2 \ln _{2} \Delta$
Y.Song, X. Song, C. Zhang, Linear Multilinear Algebra. 2016.
(3) For undirected graph $G, \eta(G) \leq \frac{(\Delta-1) n}{\Delta}$ with characterization of equality. Qi Zhou, Dein Wong, Dongqin Sun, Linear Algebra Appl. 2018
(1) For undirected Tree $T, \eta(T) \leq n-2\left\lceil\frac{n-2}{\Delta}\right\rceil$, with characterization of equality. Stanley Fiorini, Ivan Gutman, Irene Sciriha, Linear Algebra Appl. 2005
(2) For bipartite graph $G, \eta(G) \leq n-2-2 \ln _{2} \Delta$
Y.Song, X. Song, C. Zhang, Linear Multilinear Algebra. 2016.
(3) For undirected graph $G, \eta(G) \leq \frac{(\Delta-1) n}{\Delta}$ with characterization of equality. Qi Zhou, Dein Wong, Dongqin Sun, Linear Algebra Appl. 2018
(4) For connected graph $G, \eta(G) \leq \frac{(\Delta-2) n+2}{\Delta-1}$, with characterization of equality.

- Zhi Wen Wang, Ji Ming Guo, Linear Algebra Appl. 2019
- Wanting Sun, Shuchao Li, Linear Algebra Appl. 2019
- Bo Chenga, Muhuo Liub, Bolian Liud, Linear Algebra Appl. 2019
- Long Wang, Xianya Geng, Journal of Graph Theory 2020

Now we consider the problem in more general setup.

Now we consider the problem in more general setup.

- Nullity is the multiplicity of zero eigenvalue. Now, we are looking for multiplicity of any arbitrary eigenvalue.

Now we consider the problem in more general setup.

- Nullity is the multiplicity of zero eigenvalue. Now, we are looking for multiplicity of any arbitrary eigenvalue.
- Since $A(G)$ is a particular case of $A_{\alpha}(G)$, so we consider $A_{\alpha}(G)$.

Now we consider the problem in more general setup.

- Nullity is the multiplicity of zero eigenvalue. Now, we are looking for multiplicity of any arbitrary eigenvalue.
- Since $A(G)$ is a particular case of $A_{\alpha}(G)$, so we consider $A_{\alpha}(G)$.

One immediate result.
(5) Let $m_{\alpha}(G, \lambda)$ be the multiplicity of λ as an eigenvalue of $A_{\alpha}(G)$. Then

$$
m_{\alpha}(G, \lambda) \leq \frac{(\Delta-2) n+2}{\Delta-1}, \text { with characterization of equality. }
$$

Long Wanga, Xianwen Fanga, Xianya Genga, Fenglei Tianb, Linear Algebra Appl. 2019

Remark: $m_{0}(G, 0)=\eta(G)$, above result is a generalization.

- Let $\Phi=(G, \varphi)$ be a connected \mathbb{T}-gain graph.
- $A(\Phi)$ and $D(\Phi)$ are the adjacency matrix and degree matrix of Φ, respectively.
- Then $A_{\alpha}(\Phi):=\alpha D(\Phi)+(1-\alpha) A(\Phi)$, for $\alpha \in[0,1]$.
- $m_{\alpha}(\Phi, \lambda)$ is the multiplicity of λ as an eigenvalue of $A_{\alpha}(\Phi)$, where $\alpha \in[0,1)$.
- It is clear that $m_{0}(\Phi, 0)=\eta(\Phi)$.
- Let $\Phi=(G, \varphi)$ be a connected \mathbb{T}-gain graph.
- $A(\Phi)$ and $D(\Phi)$ are the adjacency matrix and degree matrix of Φ, respectively.
- Then $A_{\alpha}(\Phi):=\alpha D(\Phi)+(1-\alpha) A(\Phi)$, for $\alpha \in[0,1]$.
- $m_{\alpha}(\Phi, \lambda)$ is the multiplicity of λ as an eigenvalue of $A_{\alpha}(\Phi)$, where $\alpha \in[0,1)$.
- It is clear that $m_{0}(\Phi, 0)=\eta(\Phi)$.
(6) For \mathbb{T}-gain graph $\Phi, \eta(\Phi) \leq \frac{(\Delta-1) n}{\Delta}$, with characterization of equality. Yong Lu, Jingwen Wu, Linear Algebra Appl. 2020

In 2019 (LAA, JGT): $\quad m_{0}(\boldsymbol{G}, \mathbf{0})=\boldsymbol{\eta}(\boldsymbol{G}) \leq \frac{(\Delta-2) n+2}{\Delta-1}$

In 2019 (LAA, JGT): $\quad m_{0}(G, 0)=\eta(G) \leq \frac{(\Delta-2) n+2}{\Delta-1}$

In 2019 (LAA, JGT): $\quad m_{0}(G, 0)=\eta(G) \leq \frac{(\Delta-2) n+2}{\Delta-1}$

Our Contribution

Theorem (A. Samanta, M. Rajesh Kannan, 2021)

Let $\Phi=(G, \varphi)$ be a connected \mathbb{T}-gain graph of n vertices with maximum vertex degree $\Delta \geq 2$. If $m_{\alpha}(\Phi, \lambda)$ is the multiplicity of λ as an A_{α}-eigenvalue of Φ, where $\alpha \in[0,1)$, then

$$
\begin{equation*}
m_{\alpha}(\Phi, \lambda) \leq \frac{(\Delta-2) n+2}{(\Delta-1)} . \tag{1}
\end{equation*}
$$

Theorem (A. Samanta, M. Rajesh Kannan, 2021)

Let $\Phi=(G, \varphi)$ be a connected \mathbb{T}-gain graph of n vertices with maximum vertex degree $\Delta \geq 2$. If $m_{\alpha}(\Phi, \lambda)$ is the multiplicity of λ as an A_{α}-eigenvalue of Φ, where $\alpha \in[0,1)$, then

$$
\begin{equation*}
m_{\alpha}(\Phi, \lambda) \leq \frac{(\Delta-2) n+2}{(\Delta-1)} \tag{1}
\end{equation*}
$$

Charecterization (A. Samanta, M. Rajesh Kannan, 2021)

Equality occurs in (1) if and only if one of the following holds:
(i) $\Phi \sim\left(K_{\frac{n}{2}, \frac{n}{2}}, 1\right)$ and $\lambda=\frac{\alpha n}{2}$.
(ii) $\Phi=\left(C_{n}, \varphi\right)$ with $\varphi\left(C_{n}\right)=1$ and
$\lambda \in\left\{2 \alpha+2(1-\alpha) \cos \left(\frac{2 \pi j}{n}\right): j=0,1, \ldots,\left\lceil\frac{n}{2}\right\rceil-1\right\}$.
(iii) $\Phi=\left(C_{n}, \varphi\right)$ with $\varphi\left(C_{n}\right)=-1$ and
$\lambda \in\left\{2 \alpha+2(1-\alpha) \cos \left(\frac{(2 j+1) \pi}{n}\right): j=0,1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$.
(iv) $\Phi=\left(K_{n}, \varphi\right)$ with $\mu \in \sigma(\Phi)$ has multiplicity $(n-1)$ and $\lambda=\alpha(n-1)+(1-\alpha) \mu$.

The following are the main significance of the above Theorem.

- Particular case of the above Theorem improve the Result (6).

The following are the main significance of the above Theorem.

- Particular case of the above Theorem improve the Result (6).
- The above Theorem extend the Result (5) for \mathbb{T}-gain graphs.

The following are the main significance of the above Theorem.

- Particular case of the above Theorem improve the Result (6).
- The above Theorem extend the Result (5) for \mathbb{T}-gain graphs.
- Particular case of the above Theorem simplify the proof of the Result (5).

Sketch of the Proof

Let $\Phi=(G, \varphi)$ be a connected \mathbb{T}-gain graph with vertices $V(\Phi)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and maximum vertex degree $\Delta \geq 2$.

Sketch of the Proof

Let $\Phi=(G, \varphi)$ be a connected \mathbb{T}-gain graph with vertices $V(\Phi)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and maximum vertex degree $\Delta \geq 2$.

- Key ideas: Zero forcing number $Z(G)$

Zero forcing set

The notion of a zero-forcing set of a simple graph G was introduced in AIM Minimum Rank-Special Graphs Work Group, Linear Algebra Appl. 2008.

Zero forcing set

The notion of a zero-forcing set of a simple graph G was introduced in AIM Minimum Rank-Special Graphs Work Group, Linear Algebra Appl. 2008.

- Color-change rule: Let G be a simple graph such that each vertex of G is colored either black or red. Suppose vertex v_{i} is a black vertex and exactly one neighbor v_{j} of v_{i} is red among all other neighbors. Then change the color of v_{j} to black.

Zero forcing set

The notion of a zero-forcing set of a simple graph G was introduced in AIM Minimum Rank-Special Graphs Work Group, Linear Algebra Appl. 2008.

- Color-change rule: Let G be a simple graph such that each vertex of G is colored either black or red. Suppose vertex v_{i} is a black vertex and exactly one neighbor v_{j} of v_{i} is red among all other neighbors. Then change the color of v_{j} to black.
- The derived coloring of a given coloring of G is the resulting coloring after applying the color-change rule such that no more changes are possible.

Zero forcing set

The notion of a zero-forcing set of a simple graph G was introduced in AIM Minimum Rank-Special Graphs Work Group, Linear Algebra Appl. 2008.

- Color-change rule: Let G be a simple graph such that each vertex of G is colored either black or red. Suppose vertex v_{i} is a black vertex and exactly one neighbor v_{j} of v_{i} is red among all other neighbors. Then change the color of v_{j} to black.
- The derived coloring of a given coloring of G is the resulting coloring after applying the color-change rule such that no more changes are possible.
- A subset Z of the vertex set of G is called a zero forcing set of G, if initially the vertices of Z are all colored black and the remaining vertices are colored red, the derived coloring of G are all black.

Counter example of zero forcing set

Derived coloring

Example of Zero forcing set

Zero forcing number: $\quad Z(G):=\min _{Z}|Z| \quad$ over all zero forcing set Z

Zero forcing number: $\quad Z(G):=\min _{Z}|Z|$ over all zero forcing set Z

Let us present the following immediate result.
(6) For any connected G with $\Delta \geq 2$,

$$
z(G) \leq \frac{(\Delta-2) n+2}{(\Delta-1)}
$$

Equality occur if and only if G is either C_{n}, or K_{n}, or $K_{\frac{n}{2}, \frac{n}{2}}$.
Michael Gentner at el., Discrete Appl. Math 2016.

Sketch of the Proof

Let $\Phi=(G, \varphi)$ be a connected \mathbb{T}-gain graph with vertices $V(\Phi)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and maximum vertex degree Δ.

- Key ideas: Zero forcing number $Z(G), \quad Z(G) \leq \frac{(\Delta-2) n+2}{(\Delta-1)}$

Sketch of the Proof

Let $\Phi=(G, \varphi)$ be a connected \mathbb{T}-gain graph with vertices $V(\Phi)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and maximum vertex degree Δ.

- Key ideas: Zero forcing number $Z(G), \quad Z(G) \leq \frac{(\Delta-2) n+2}{(\Delta-1)}$
- Define $M(\Phi):=\max \{\eta(B): B \in \mathcal{H}(\Phi)\}$.

Construction of $\mathcal{H}(\Phi)$:

Construction of $\mathcal{H}(\Phi)$:

Let H_{n} denote the set of all Hermitian matrices of order n.

Construction of $\mathcal{H}(\Phi)$:

Let H_{n} denote the set of all Hermitian matrices of order n.
For $B \in H_{n}$, define the matrix $\mathcal{G}(B)$ as follows:

Construction of $\mathcal{H}(\Phi)$:

Let H_{n} denote the set of all Hermitian matrices of order n.
For $B \in H_{n}$, define the matrix $\mathcal{G}(B)$ as follows:

$$
\mathcal{G}(B)_{i j}= \begin{cases}\frac{B_{i j}}{\left|B_{i j}\right|} & \text { if } B_{i j} \neq 0, \\ 0 & \text { otherwise. }\end{cases}
$$

Construction of $\mathcal{H}(\Phi)$:

Let H_{n} denote the set of all Hermitian matrices of order n. For $B \in H_{n}$, define the matrix $\mathcal{G}(B)$ as follows:

$$
\mathcal{G}(B)_{i j}= \begin{cases}\frac{B_{i j}}{\left|B_{i j}\right|} & \text { if } B_{i j} \neq 0, \\ 0 & \text { otherwise. }\end{cases}
$$

Let $\Phi=(G, \varphi)$ be any \mathbb{T}-gain graph of n vertices.

Construction of $\mathcal{H}(\Phi)$:

Let H_{n} denote the set of all Hermitian matrices of order n.
For $B \in H_{n}$, define the matrix $\mathcal{G}(B)$ as follows:

$$
\mathcal{G}(B)_{i j}= \begin{cases}\frac{B_{i j}}{\left|B_{i j}\right|} & \text { if } B_{i j} \neq 0, \\ 0 & \text { otherwise. }\end{cases}
$$

Let $\Phi=(G, \varphi)$ be any \mathbb{T}-gain graph of n vertices.
A matrix $B=\left(B_{i j}\right) \in H_{n}$ is a matrix of type Φ if $\mathcal{G}(B)_{i j}=A(\Phi)_{i j}$ for all $i \neq j$.

Construction of $\mathcal{H}(\Phi)$:

Let H_{n} denote the set of all Hermitian matrices of order n.
For $B \in H_{n}$, define the matrix $\mathcal{G}(B)$ as follows:

$$
\mathcal{G}(B)_{i j}= \begin{cases}\frac{B_{i j}}{\left|B_{i j}\right|} & \text { if } B_{i j} \neq 0, \\ 0 & \text { otherwise. }\end{cases}
$$

Let $\Phi=(G, \varphi)$ be any \mathbb{T}-gain graph of n vertices.
A matrix $B=\left(B_{i j}\right) \in H_{n}$ is a matrix of type Φ if $\mathcal{G}(B)_{i j}=A(\Phi)_{i j}$ for all $i \neq j$. $\mathcal{H}(\Phi):=\left\{B \in H_{n}: B\right.$ is of type $\left.\Phi\right\}$.

Construction of $\mathcal{H}(\Phi)$:

Let H_{n} denote the set of all Hermitian matrices of order n.
For $B \in H_{n}$, define the matrix $\mathcal{G}(B)$ as follows:

$$
\mathcal{G}(B)_{i j}= \begin{cases}\frac{B_{i j}}{\left|B_{i j}\right|} & \text { if } B_{i j} \neq 0, \\ 0 & \text { otherwise. }\end{cases}
$$

Let $\Phi=(G, \varphi)$ be any \mathbb{T}-gain graph of n vertices.
A matrix $B=\left(B_{i j}\right) \in H_{n}$ is a matrix of type Φ if $\mathcal{G}(B)_{i j}=A(\Phi)_{i j}$ for all $i \neq j$. $\mathcal{H}(\Phi):=\left\{B \in H_{n}: B\right.$ is of type $\left.\Phi\right\}$.
Let $\eta(B)$ be the nullity of the matrix B.
Define $M(\Phi):=\max \{\eta(B): B \in \mathcal{H}(\Phi)\}$.
Particularly, $\eta(A(\Phi)) \leq M(\Phi)$.

Sketch of the Proof

- Key ideas: Zero forcing number $Z(G), \quad Z(G) \leq \frac{(\Delta-2) n+2}{(\Delta-1)}$
- Define $M(\Phi):=\max \{\eta(B): B \in \mathcal{H}(\Phi)\}$, then $\eta(B) \leq M(\Phi)$, where B is of type Φ.

Sketch of the Proof

- Key ideas: Zero forcing number $Z(G), \quad Z(G) \leq \frac{(\Delta-2) n+2}{(\Delta-1)}$
- Define $M(\Phi):=\max \{\eta(B): B \in \mathcal{H}(\Phi)\}$, then $\eta(B) \leq M(\Phi)$, where B is of type Φ.
- Then $M(\Phi) \leq Z(G)$

We use few more results. For $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{C}^{n}$, the support of y is the set of indices j such that $y_{j} \neq 0$, and is denoted by $\operatorname{supp}(y)$. For real symmetric metrics, the following two results are known.

We use few more results. For $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{C}^{n}$, the support of y is the set of indices j such that $y_{j} \neq 0$, and is denoted by $\operatorname{supp}(y)$. For real symmetric metrics, the following two results are known.

Lemma 1

Let Φ be any \mathbb{T}-gain graph, and Z be a zero forcing set of Φ. Let $B \in \mathcal{H}(\Phi)$ and $y \in \operatorname{Ker} B$ with $\operatorname{supp}(y) \cap Z=\phi$. Then $y=0$.

We use few more results. For $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{C}^{n}$, the support of y is the set of indices j such that $y_{j} \neq 0$, and is denoted by $\operatorname{supp}(y)$. For real symmetric metrics, the following two results are known.

Lemma 1

Let Φ be any \mathbb{T}-gain graph, and Z be a zero forcing set of Φ. Let $B \in \mathcal{H}(\Phi)$ and $y \in \operatorname{Ker} B$ with $\operatorname{supp}(y) \cap Z=\phi$. Then $y=0$.

Proof: Let $V(\Phi)$ be the vertex set of Φ. If $Z=V(\Phi)$, then $y=0$.

We use few more results. For $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{C}^{n}$, the support of y is the set of indices j such that $y_{j} \neq 0$, and is denoted by $\operatorname{supp}(y)$. For real symmetric metrics, the following two results are known.

Lemma 1

Let Φ be any \mathbb{T}-gain graph, and Z be a zero forcing set of Φ. Let $B \in \mathcal{H}(\Phi)$ and $y \in \operatorname{Ker} B$ with $\operatorname{supp}(y) \cap Z=\phi$. Then $y=0$.

Proof: Let $V(\Phi)$ be the vertex set of Φ. If $Z=V(\Phi)$, then $y=0$. Suppose $Z \subset V(\Phi)$. Since Z is a zero forcing set, so all the white vertices in $V(\Phi) \backslash Z$ can be colored black by color change rule. Let $v_{i} \in Z$ be such that it has exactly one red neighbour vertex v_{t}.

We use few more results. For $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{C}^{n}$, the support of y is the set of indices j such that $y_{j} \neq 0$, and is denoted by $\operatorname{supp}(y)$. For real symmetric metrics, the following two results are known.

Lemma 1

Let Φ be any \mathbb{T}-gain graph, and Z be a zero forcing set of Φ. Let $B \in \mathcal{H}(\Phi)$ and $y \in \operatorname{Ker} B$ with $\operatorname{supp}(y) \cap Z=\phi$. Then $y=0$.

Proof: Let $V(\Phi)$ be the vertex set of Φ. If $Z=V(\Phi)$, then $y=0$.
Suppose $Z \subset V(\Phi)$. Since Z is a zero forcing set, so all the white vertices in $V(\Phi) \backslash Z$ can be colored black by color change rule. Let $v_{i} \in Z$ be such that it has exactly one red neighbour vertex v_{t}.
Then the i-th entry $(B y)_{i}=B_{i i} y_{i}+\sum_{v_{i} \sim v_{j}} B_{i j} y_{j}=B_{i t} y_{t}=0$. Then $y_{t}=0$. As Z is a zero forcing set, so all the components of y associated with white vertices are zero. Hence $y=0$.

Remark: Significance of the name " Zero forcing set "

Recall the following result.
(7) Let B be any square matrix on some field with $\eta(B)>s$. Then there exists a non-zero vector $y \in \operatorname{Ker}(B)$ vanishing at s specified positions.
AIM Minimum Rank-Special Graphs Work Group, Linear Algebra Appl. 2008

Recall the following result.
(7) Let B be any square matrix on some field with $\eta(B)>s$. Then there exists a non-zero vector $y \in \operatorname{Ker}(B)$ vanishing at s specified positions. AIM Minimum Rank-Special Graphs Work Group, Linear Algebra AppI. 2008

Lemma 2

Let $\Phi=(G, \varphi)$ be any \mathbb{T}-gain graph. Then $M(\Phi) \leq Z(G)$.

Recall the following result.
(7) Let B be any square matrix on some field with $\eta(B)>s$. Then there exists a non-zero vector $y \in \operatorname{Ker}(B)$ vanishing at s specified positions.
AIM Minimum Rank-Special Graphs Work Group, Linear Algebra AppI. 2008

Lemma 2

Let $\Phi=(G, \varphi)$ be any \mathbb{T}-gain graph. Then $M(\Phi) \leq Z(G)$.
Proof: Let Z be a zero forcing set of ϕ.

Recall the following result.
(7) Let B be any square matrix on some field with $\eta(B)>s$. Then there exists a non-zero vector $y \in \operatorname{Ker}(B)$ vanishing at s specified positions. AIM Minimum Rank-Special Graphs Work Group, Linear Algebra AppI. 2008

Lemma 2

Let $\Phi=(G, \varphi)$ be any \mathbb{T}-gain graph. Then $M(\Phi) \leq Z(G)$.
Proof: Let Z be a zero forcing set of Φ.
Suppose that $M(\Phi)>|Z|$.

Recall the following result.
(7) Let B be any square matrix on some field with $\eta(B)>s$. Then there exists a non-zero vector $y \in \operatorname{Ker}(B)$ vanishing at s specified positions.
AIM Minimum Rank-Special Graphs Work Group, Linear Algebra AppI. 2008

Lemma 2

Let $\Phi=(G, \varphi)$ be any \mathbb{T}-gain graph. Then $M(\Phi) \leq Z(G)$.

Proof: Let Z be a zero forcing set of Φ.
Suppose that $M(\Phi)>|Z|$.
Then there exists a matrix $B \in \mathcal{H}(\Phi)$ such that $\eta(B)>|Z|$. Therefore, by above result, there exist a nonzero $y \in \operatorname{Ker}(B)$ such that $\operatorname{supp}(y) \cap Z=\phi$.

Recall the following result.
(7) Let B be any square matrix on some field with $\eta(B)>s$. Then there exists a non-zero vector $y \in \operatorname{Ker}(B)$ vanishing at s specified positions.
AIM Minimum Rank-Special Graphs Work Group, Linear Algebra Appl. 2008

Lemma 2

Let $\Phi=(G, \varphi)$ be any \mathbb{T}-gain graph. Then $M(\Phi) \leq Z(G)$.

Proof: Let Z be a zero forcing set of Φ.
Suppose that $M(\Phi)>|Z|$.
Then there exists a matrix $B \in \mathcal{H}(\Phi)$ such that $\eta(B)>|Z|$. Therefore, by above result, there exist a nonzero $y \in \operatorname{Ker}(B)$ such that $\operatorname{supp}(y) \cap Z=\phi$.
By Lemma 1, we get $y=0$, a contradiction. Thus $M(\Phi) \leq|Z|$, and hence $M(\Phi) \leq Z(G)$.

Sketch of the Proof

- Key ideas: Zero forcing number $Z(G), \quad Z(G) \leq \frac{(\Delta-2) n+2}{(\Delta-1)}$
- Define $M(\Phi):=\max \{\eta(B): B \in \mathcal{H}(\Phi)\}$, then $\eta(B) \leq M(\Phi)$, where B is of type Φ.
- Then $M(\Phi) \leq Z(G)$

Sketch of the Proof

- Key ideas: Zero forcing number $Z(G), \quad Z(G) \leq \frac{(\Delta-2) n+2}{(\Delta-1)}$
- Define $M(\Phi):=\max \{\eta(B): B \in \mathcal{H}(\Phi)\}$, then $\eta(B) \leq M(\Phi)$, where B is of type Φ.
- Then $M(\Phi) \leq Z(G)$
- For $\alpha \in[0,1), \boldsymbol{A}_{\alpha}(\Phi)=\alpha D(\Phi)+(1-\alpha) A(\Phi)$.

Sketch of the Proof

- Key ideas: Zero forcing number $Z(G), \quad Z(G) \leq \frac{(\Delta-2) n+2}{(\Delta-1)}$
- Define $M(\Phi):=\max \{\eta(B): B \in \mathcal{H}(\Phi)\}$, then $\eta(B) \leq M(\Phi)$, where B is of type Φ.
- Then $M(\Phi) \leq Z(G)$
- For $\alpha \in[0,1), \boldsymbol{A}_{\alpha}(\Phi)=\alpha D(\Phi)+(1-\alpha) A(\Phi)$.

Let $\lambda \in \sigma\left(A_{\alpha}(\Phi)\right)$. Consider $B:=\left(A_{\alpha}(\Phi)-\lambda I\right)$. Therefore $\eta(B)=m_{\alpha}(\Phi, \lambda)$.

Sketch of the Proof

- Key ideas: Zero forcing number $Z(G), \quad Z(G) \leq \frac{(\Delta-2) n+2}{(\Delta-1)}$
- Define $M(\Phi):=\max \{\eta(B): B \in \mathcal{H}(\Phi)\}$, then $\eta(B) \leq M(\Phi)$, where B is of type Φ.
- Then $M(\Phi) \leq Z(G)$
- For $\alpha \in[0,1), \boldsymbol{A}_{\alpha}(\Phi)=\alpha D(\Phi)+(1-\alpha) A(\Phi)$.

Let $\lambda \in \sigma\left(A_{\alpha}(\Phi)\right)$. Consider $B:=\left(A_{\alpha}(\Phi)-\lambda I\right)$. Therefore $\eta(B)=m_{\alpha}(\Phi, \lambda)$.
Now $\mathcal{G}(B)_{i j}=\frac{B_{i j}}{\left|B_{i j}\right|}=\frac{(1-\alpha) A(\Phi)_{j}}{|(1-\alpha)| A(\Phi){ }_{j i} \mid}=A(\Phi)_{i j}$, for $i \neq j$ and $\alpha \in[0,1)$. Thus $B \in \mathcal{H}(\Phi)$.

Sketch of the Proof

- Key ideas: Zero forcing number $Z(G), \quad Z(G) \leq \frac{(\Delta-2) n+2}{(\Delta-1)}$
- Define $M(\Phi):=\max \{\eta(B): B \in \mathcal{H}(\Phi)\}$, then $\eta(B) \leq M(\Phi)$, where B is of type Φ.
- Then $M(\Phi) \leq Z(G)$
- For $\alpha \in[0,1), A_{\alpha}(\Phi)=\alpha D(\Phi)+(1-\alpha) A(\Phi)$.

Let $\lambda \in \sigma\left(A_{\alpha}(\Phi)\right)$. Consider $B:=\left(A_{\alpha}(\Phi)-\lambda I\right)$. Therefore $\eta(B)=m_{\alpha}(\Phi, \lambda)$.
Now $\mathcal{G}(B)_{i j}=\frac{B_{i j}}{\left|B_{i j}\right|}=\frac{(1-\alpha) A(\Phi)_{i j}}{|(1-\alpha)| A(\Phi)_{i j} \mid}=A(\Phi)_{i j}$, for $i \neq j$ and $\alpha \in[0,1)$. Thus $B \in \mathcal{H}(\Phi)$.
Therefore, $\eta(B) \leq M(\Phi)$. Combining all

$$
m_{\alpha}(\Phi, \lambda)=\eta(B) \leq M(\Phi) \leq Z(G) \leq \frac{(\Delta-2) n+2}{\Delta-1} .
$$

Characterization of equality:

If $m_{\alpha}(\Phi, \lambda)=\frac{(\Delta-2) n+2}{\Delta-1}$, then $Z(G)=\frac{(\Delta-2) n+2}{\Delta-1}$. By result (6), G is either $K_{\frac{n}{2}, \frac{n}{2}}$ or K_{n} or C_{n}.

Characterization of equality:

If $m_{\alpha}(\Phi, \lambda)=\frac{(\Delta-2) n+2}{\Delta-1}$, then $Z(G)=\frac{(\Delta-2) n+2}{\Delta-1}$. By result (6), G is either $K_{\frac{n}{2}, \frac{n}{2}}$ or K_{n} or C_{n}.
Case 1: Suppose $\Phi=\left(K_{\frac{n}{2}}, \frac{n}{2}, \varphi\right)$. Then $m_{\alpha}(\Phi, \lambda)=\frac{(\Delta-2) n+2}{\Delta-1}=n-2$. Therefore, there is an eigenvalue μ of $A(\Phi)$ with multiplicity $(n-2)$ such that $\lambda=\frac{\alpha n}{2}+(1-\alpha) \mu$.

Characterization of equality:

If $m_{\alpha}(\Phi, \lambda)=\frac{(\Delta-2) n+2}{\Delta-1}$, then $Z(G)=\frac{(\Delta-2) n+2}{\Delta-1}$. By result (6), G is either $K_{\frac{n}{2}, \frac{n}{2}}$ or K_{n} or C_{n}.
Case 1: Suppose $\Phi=\left(K_{n}, \frac{n}{2}, \varphi\right)$. Then $m_{\alpha}(\Phi, \lambda)=\frac{(\Delta-2) n+2}{\Delta-1}=n-2$. Therefore, there is an eigenvalue μ of $A(\Phi)$ with multiplicity $(n-2)$ such that $\lambda=\frac{\alpha n}{2}+(1-\alpha) \mu$.

- Since Φ is bipartite, the eigenvalues are symmetric about origin.

Characterization of equality:

If $m_{\alpha}(\Phi, \lambda)=\frac{(\Delta-2) n+2}{\Delta-1}$, then $Z(G)=\frac{(\Delta-2) n+2}{\Delta-1}$. By result (6), G is either $K_{\frac{n}{2}, \frac{n}{2}}$ or K_{n} or C_{n}.
Case 1: Suppose $\Phi=\left(K_{\frac{n}{2}}, \frac{n}{2}, \varphi\right)$. Then $m_{\alpha}(\Phi, \lambda)=\frac{(\Delta-2) n+2}{\Delta-1}=n-2$. Therefore, there is an eigenvalue μ of $A(\Phi)$ with multiplicity $(n-2)$ such that $\lambda=\frac{\alpha n}{2}+(1-\alpha) \mu$.

- Since Φ is bipartite, the eigenvalues are symmetric about origin.
- Then $\mu=0$. Therefore $r(\Phi)=2$
- Let $\left(C_{4}, \varphi\right)$ be an induced 4 -cycle in Φ.
- $2 \leq r\left(C_{4}, \varphi\right) \leq r(\Phi)=2$, so $r\left(C_{4}, \varphi\right)=2$.

Characterization of equality:

If $m_{\alpha}(\Phi, \lambda)=\frac{(\Delta-2) n+2}{\Delta-1}$, then $Z(G)=\frac{(\Delta-2) n+2}{\Delta-1}$. By result (6), G is either $K_{\frac{n}{2}, \frac{n}{2}}$ or K_{n} or C_{n}.
Case 1: Suppose $\Phi=\left(K_{\frac{n}{2}}, \frac{n}{2}, \varphi\right)$. Then $m_{\alpha}(\Phi, \lambda)=\frac{(\Delta-2) n+2}{\Delta-1}=n-2$. Therefore, there is an eigenvalue μ of $A(\Phi)$ with multiplicity $(n-2)$ such that $\lambda=\frac{\alpha n}{2}+(1-\alpha) \mu$.

- Since Φ is bipartite, the eigenvalues are symmetric about origin.
- Then $\mu=0$. Therefore $r(\Phi)=2$
- Let $\left(C_{4}, \varphi\right)$ be an induced 4 -cycle in Φ.
- $2 \leq r\left(C_{4}, \varphi\right) \leq r(\Phi)=2$, so $r\left(C_{4}, \varphi\right)=2$.
- Then $\varphi\left(C_{4}\right)=1$. Therefore, any 4 -cycle in Φ is neutral.
- Let us take an arbitrary cycle $C_{2 k} \equiv v_{1}-v_{2}-\cdots-v_{2 k}$.

Case 1: Suppose $\Phi=\left(K_{\frac{n}{2}, \frac{n}{2}}, \varphi\right)$. Then $m_{\alpha}(\Phi, \lambda)=\frac{(\Delta-2) n+2}{\Delta-1}=n-2$. Therefore, there is an eigenvalue μ of $A(\Phi)$ with multiplicity $(n-2)$ such that $\lambda=\frac{\alpha n}{2}+(1-\alpha) \mu$.

- Since Φ is bipartite, the eigenvalues are symmetric about origin.
- Then $\mu=0$. Therefore $r(\Phi)=2$
- Let $\left(C_{4}, \varphi\right)$ be an induced 4-cycle in Φ.
- $2 \leq r\left(C_{4}, \varphi\right) \leq r(\Phi)=2$, so $r\left(C_{4}, \varphi\right)=2$.
- Then $\varphi\left(C_{4}\right)=1$. Therefore, any 4-cycle in Φ is neutral.
- Let us take an arbitrary cycle $C_{2 k} \equiv v_{1}-v_{2}-\cdots-v_{2 k}$.

$$
\begin{aligned}
\varphi\left(\overrightarrow{C_{2 k}}\right)= & \varphi\left(\overrightarrow{e_{1,2}}\right) \varphi\left(\overrightarrow{e_{2,3}}\right) \cdots \varphi\left(\overrightarrow{e_{(2 k-1), 2 k}}\right) \\
= & \left\{\varphi\left(\overrightarrow{e_{1,2}}\right) \varphi\left(\overrightarrow{e_{2,3}}\right) \varphi\left(\overrightarrow{e_{3,4}}\right) \varphi\left(\overrightarrow{e_{4,1}}\right)\right\} \\
& \left\{\varphi\left(\overrightarrow{e_{1,4}}\right) \varphi\left(\overrightarrow{e_{4,5}}\right) \varphi\left(\overrightarrow{e_{5,6}}\right) \varphi\left(\overrightarrow{e_{6,1}}\right)\right\} \\
& \vdots \\
& \left\{\varphi\left(\overrightarrow{e_{1,(2 k-2)}}\right) \varphi\left(\overrightarrow{e_{(2 k-2),(2 k-1)}}\right) \varphi\left(\overrightarrow{e_{(2 k-1), 2 k}}\right) \varphi\left(\overrightarrow{e_{2 k, 1}}\right)\right\} \\
= & 1 .
\end{aligned}
$$

Therefore $\Phi \sim\left(K_{\frac{n}{2}, \frac{n}{2}}, 1\right)$ and $\lambda=\frac{\alpha n}{2}$. Thus statement (i) holds.

Case 2: Suppose $\Phi=\left(K_{n}, \varphi\right)$ and $m_{\alpha}(\Phi, \lambda)=\frac{(\Delta-2) n+2}{\Delta-1}$. Then $m_{\alpha}(\Phi, \lambda)=n-1$. Therefore, λ is an eigenvalue of $A_{\alpha}(\Phi)$ with multiplicity $(n-1)$. Therefore, $A(\Phi)$ has an eigenvalue μ with multiplicity $(n-1)$. Statement (ii) holds.

Case 3: Suppose $\Phi=\left(C_{n}, \varphi\right)$ and $m_{\alpha}(\Phi, \lambda)=\frac{(\Delta-2) n+2}{\Delta-1}$. Then $m_{\alpha}(\Phi, \lambda)=2$. Therefore by some known results, either statement (iii) or statement (iv) holds.

Another improved bound:

Theorem (A. Samanta, M. Rajesh Kannan, 2021)

Let Φ be any connected \mathbb{T}-gain graph with n vertices and the maximum vertex degree $\Delta \geq 3$. Then

$$
\eta(\Phi) \leq \frac{n(\Delta-2)}{\Delta-1}
$$

equality holds if and only if $\Phi \notin\left\{\left(K_{\frac{n}{2}, \frac{n}{2}}, 1\right),\left(K_{\frac{n+1}{2}, \frac{n-1}{2}}, 1\right)\right\}$.

Problem

One can consider a problem to find better bound of $\eta(G)$ in terms of n and Δ by excluding some particular graphs.

References I

AIM Minimum Rank-Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl. 428 (2008), no. 7, 1628-1648. MR 2388646

Yong Lu and Jingwen Wu, Bounds for the rank of a complex unit gain graph in terms of its maximum degree, Linear Algebra Appl. 610 (2021), 73-85. MR 4159284
V. Nikiforov, Merging the A - and Q-spectral theories, Appl. Anal. Discrete Math. 11 (2017), no. 1, 81-107. MR 3648656

Nathan Reff, Spectral properties of complex unit gain graphs, Linear Algebra Appl. 436 (2012), no. 9, 3165-3176. MR 2900705

Aniruddha Samanta and M. Rajesh Kannan, On the multiplicity of A_{α}-eigenvalues and the rank of complex unit gain graphs, arXiv preprint arXiv:2101.03752 (2021).

Wanting Sun and Shuchao Li, A short proof of Zhou, Wong and Sun's conjecture, Linear Algebra Appl. 589 (2020), 80-84. MR 4045263

Long Wang, Xianwen Fang, Xianya Geng, and Fenglei Tian, On the multiplicity of an arbitrary A_{α}-eigenvalue of a connected graph, Linear Algebra Appl. 589 (2020), 28-38. MR 4044756

Long Wang and Xianya Geng, Proof of a conjecture on the nullity of a graph, J. Graph Theory 95 (2020), no. 4, 586-593. MR 4174131

Thomas Zaslavsky, Biased graphs. I. Bias, balance, and gains, J. Combin. Theory Ser. B 47 (1989), no. 1, 32-52. MR 1007712

Thank You

