On the multiplicity of A_{α} -eigenvalues for T-gain graphs

Aniruddha Samanta

Research Scholar

Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur, India.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

Outline

- Introduction & Preliminaries
- Literature survey
- Our contribution
- References

Introduction & Preliminaries

Dealing with Graphs and Matrices

Dealing with Graphs and Matrices

Matrices associated with graphs:

Adjacency Matrix Incidence Matrix Laplacian Matrix Distance Matrix, and many more.

Dealing with Graphs and Matrices

Matrices associated with graphs:

Adjacency Matrix

Incidence Matrix Laplacian Matrix

Distance Matrix, and many more.

New class of adjacency matrix

 A_{α} -matrix of \mathbb{T} -gain graph

New class of adjacency matrix

 A_{α} -matrix of \mathbb{T} -gain graph

A generalization of adjacency matrix

New class of adjacency matrix

 A_{α} -matrix of \mathbb{T} -gain graph

A generalization of adjacency matrix

Main aim:

How is the multiplicity of an eigenvalue related to n and Δ for such matrices?

What is A_{α} -matrix of a \mathbb{T} -gain graph ?

What is A_{α} -matrix of a \mathbb{T} -gain graph ?

Why is this a generalization of adjacency matrix ?

< ∃⇒

Let G = (V(G), E(G)) be a simple graph with vertex set V(G) = {v₁, v₂, · · · , v_n}. If two vertices v_i and v_j are connected by an edge, then we write v_i ∼ v_j and the edge between them is e_{i,j}

- Let G = (V(G), E(G)) be a simple graph with vertex set V(G) = {v₁, v₂, · · · , v_n}. If two vertices v_i and v_j are connected by an edge, then we write v_i ∼ v_j and the edge between them is e_{i,j}
- The *degree of a vertex* v_j is $d(v_j)$ which is the number of vertices adjacent to v_j .

- Let G = (V(G), E(G)) be a simple graph with vertex set V(G) = {v₁, v₂, · · · , vₙ}.
 If two vertices vᵢ and vⱼ are connected by an edge, then we write vᵢ ~ vⱼ and the edge between them is eᵢ,j
- The *degree of a vertex* v_j is $d(v_j)$ which is the number of vertices adjacent to v_j .
- The *maximum vertex degree* of G is Δ(G) := max{d(v_j) : j = 1, 2, · · · , n}. Simply write Δ.

<ロ> <同> <同> < 回> < 回> < 回> = 三

- Let G = (V(G), E(G)) be a simple graph with vertex set V(G) = {v₁, v₂, · · · , vₙ}.
 If two vertices vᵢ and vⱼ are connected by an edge, then we write vᵢ ~ vⱼ and the edge between them is eᵢ,j
- The *degree of a vertex* v_j is $d(v_j)$ which is the number of vertices adjacent to v_j .
- The *maximum vertex degree* of G is Δ(G) := max{d(v_j) : j = 1, 2, · · · , n}. Simply write Δ.
- **Degree matrix** of G is $D(G) := diag(d(v_1), d(v_2), \cdots, d(v_n))$.

・ロト ・回ト ・ヨト ・ヨト … ヨ

- Let G = (V(G), E(G)) be a simple graph with vertex set V(G) = {v₁, v₂, · · · , vₙ}.
 If two vertices vᵢ and vⱼ are connected by an edge, then we write vᵢ ~ vⱼ and the edge between them is eᵢ,j
- The *degree of a vertex* v_j is $d(v_j)$ which is the number of vertices adjacent to v_j .
- The *maximum vertex degree* of G is Δ(G) := max{d(v_j) : j = 1, 2, · · · , n}. Simply write Δ.
- **Degree matrix** of G is $D(G) := diag(d(v_1), d(v_2), \cdots, d(v_n))$.
- *Adjacency matrix* A(G) of G is an (n × n) symmetric matrix whose (i, j)th entry is defined as follows:

$$m{A}(G)_{ij} = egin{cases} 1 & ext{if } m{v}_i \sim m{v}_j, \ 0 & ext{otherwise}. \end{cases}$$

- Let G = (V(G), E(G)) be a simple graph with vertex set V(G) = {v₁, v₂, · · · , vₙ}.
 If two vertices vᵢ and vⱼ are connected by an edge, then we write vᵢ ~ vⱼ and the edge between them is eᵢ,j
- The *degree of a vertex* v_j is $d(v_j)$ which is the number of vertices adjacent to v_j .
- The *maximum vertex degree* of G is Δ(G) := max{d(v_j) : j = 1, 2, · · · , n}. Simply write Δ.
- **Degree matrix** of G is $D(G) := diag(d(v_1), d(v_2), \cdots, d(v_n))$.
- *Adjacency matrix* A(G) of G is an (n × n) symmetric matrix whose (i, j)th entry is defined as follows:

$$m{A}(m{G})_{ij} = egin{cases} 1 & ext{if } m{v}_i \sim m{v}_j, \ 0 & ext{otherwise}. \end{cases}$$

The *nullity* of G, denoted by η(G), is the nullity of A(G) which is the multiplicity of zero eigenvalue of A(G).

<ロ> <同> <同> < 回> < 回> < 回> = 三回

• It is known that Q(G) := D(G) + A(G) is the signless Laplacian matrices of G.

- It is known that Q(G) := D(G) + A(G) is the signless Laplacian matrices of G.
- Nikiforov introduced the A_α-matrix of G, which is a convex combination of D(G) and A(G), defined as

$$A_{\alpha}(G) = \alpha D(G) + (1 - \alpha)A(G), \quad \alpha \in [0, 1].$$

Applicable Analysis and Discrete Mathematics, 2017.

イロト イポト イヨト イヨト

- It is known that Q(G) := D(G) + A(G) is the signless Laplacian matrices of G.
- Nikiforov introduced the A_α-matrix of G, which is a convex combination of D(G) and A(G), defined as

$$A_{\alpha}(G) = \alpha D(G) + (1 - \alpha)A(G), \quad \alpha \in [0, 1].$$

Applicable Analysis and Discrete Mathematics, 2017.

• It is obvious that $A_0(G) = A(G)$, $A_{\frac{1}{2}}(G) = \frac{1}{2}Q(G)$ and $A_1(G)$ is D(G).

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- It is known that Q(G) := D(G) + A(G) is the signless Laplacian matrices of G.
- Nikiforov introduced the A_α-matrix of G, which is a convex combination of D(G) and A(G), defined as

$$A_{\alpha}(G) = \alpha D(G) + (1 - \alpha)A(G), \quad \alpha \in [0, 1].$$

Applicable Analysis and Discrete Mathematics, 2017.

- It is obvious that $A_0(G) = A(G)$, $A_{\frac{1}{2}}(G) = \frac{1}{2}Q(G)$ and $A_1(G)$ is D(G).
- Let m_α(G, λ) denotes the multiplicity of λ as an eigenvalue of A_α(G), for α ∈ [0, 1).
 Particularly, m₀(G, 0) = η(G).

◆□▶ ◆□▶ ◆臣▶ ★臣▶ = 臣 = のへの

9/40

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

• Let *G* be an undirected graph with $V(G) = \{v_1, v_2, \dots, v_n\}$ and edge set E(G)

- Let G be an undirected graph with $V(G) = \{v_1, v_2, \dots, v_n\}$ and edge set E(G)
- An oriented edge from v_s to v_t is denoted by $\overrightarrow{e_{s,t}}$

- Let G be an undirected graph with $V(G) = \{v_1, v_2, \dots, v_n\}$ and edge set E(G)
- An oriented edge from v_s to v_t is denoted by $\overrightarrow{e_{s,t}}$
- Each undirected edge e_{s,t} ∈ E(G) is associated with a pair of opposite oriented edges e_{s,t} and e_{t,s}

- Let G be an undirected graph with $V(G) = \{v_1, v_2, \dots, v_n\}$ and edge set E(G)
- An oriented edge from v_s to v_t is denoted by $\overrightarrow{e_{s,t}}$
- Each undirected edge e_{s,t} ∈ E(G) is associated with a pair of opposite oriented edges e_{s,t} and e_{t,s}
- Consider the collection $\overrightarrow{E(G)} := \{\overrightarrow{e_{s,t}}, \overrightarrow{e_{t,s}} : e_{s,t} \in E(G)\}.$

マロト イヨト イヨト 二日

- Let G be an undirected graph with $V(G) = \{v_1, v_2, \dots, v_n\}$ and edge set E(G)
- An oriented edge from v_s to v_t is denoted by $\overrightarrow{e_{s,t}}$
- Each undirected edge e_{s,t} ∈ E(G) is associated with a pair of opposite oriented edges e_{s,t} and e_{t,s}
- Consider the collection $\overrightarrow{E(G)} := \{\overrightarrow{e_{s,t}}, \overrightarrow{e_{t,s}} : e_{s,t} \in E(G)\}.$
- Let $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$

・ロット (雪) (日) (日) (日)

- Let G be an undirected graph with $V(G) = \{v_1, v_2, \dots, v_n\}$ and edge set E(G)
- An oriented edge from v_s to v_t is denoted by $\overrightarrow{e_{s,t}}$
- Each undirected edge e_{s,t} ∈ E(G) is associated with a pair of opposite oriented edges e_{s,t} and e_{t,s}
- Consider the collection $\overrightarrow{E(G)} := \{\overrightarrow{e_{s,t}}, \overrightarrow{e_{t,s}} : e_{s,t} \in E(G)\}.$
- Let $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$
- A gain function on G is a mapping φ : E(G) → T such that φ(e,t) = φ(e,t)⁻¹, for every e_{s,t} ∈ E(G).

・ロン ・回 と ・ 回 と ・ 回 ・

- Let G be an undirected graph with $V(G) = \{v_1, v_2, \dots, v_n\}$ and edge set E(G)
- An oriented edge from v_s to v_t is denoted by $\overrightarrow{e_{s,t}}$
- Each undirected edge e_{s,t} ∈ E(G) is associated with a pair of opposite oriented edges e_{s,t} and e_{t,s}
- Consider the collection $\overrightarrow{E(G)} := \{\overrightarrow{e_{s,t}}, \overrightarrow{e_{t,s}} : e_{s,t} \in E(G)\}.$
- Let $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$
- A gain function on G is a mapping φ : E(G) → T such that φ(e,t) = φ(e,t)⁻¹, for every e_{s,t} ∈ E(G).
- A *complex unit gain graph* (or \mathbb{T} -gain graph) on an underlying graph *G* is a graph (G, φ) together with a gain function φ . It is denoted by Φ . That is $\Phi = (G, \varphi)$.

Nathan Reff, Linear Algebra Appl. 2012.

・ロト ・回ト ・ヨト ・ヨト … ヨ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

 \mathbb{T} -gain adjacency matrix

T-gain adjacency matrix

 The *adjacency matrix* of a T-gain graph Φ = (G, φ) is a Hermitian matrix, denoted by A(Φ) and its (s, t)th entry is defined as follows:

$$A(\Phi)_{st} = \begin{cases} \varphi(\overrightarrow{e_{s,t}}) & \text{if } v_s \sim v_t, \\ 0 & \text{otherwise} \end{cases}$$

.
T-gain adjacency matrix

• The *adjacency matrix* of a T-gain graph $\Phi = (G, \varphi)$ is a Hermitian matrix, denoted by $A(\Phi)$ and its (s, t)th entry is defined as follows:

$$\mathcal{A}(\Phi)_{st} = \begin{cases} \varphi(\overrightarrow{e_{s,t}}) & \text{if } v_s \sim v_t, \\ 0 & \text{otherwise.} \end{cases}$$

We can observed that adjacency matrix of undirected graph, adjacency matrix of signed graph and Hermitian adjacency matrix of digraph can be considered as *A*(Φ), where the gains φ are from the set {1}, {1, -1} and {1, ±*i*}, respectively.

Example: T-gain adjacency matrix

Figure: Graph G

< 3 >

Example: T-gain adjacency matrix

Where,
$$A(\Phi_1) = \begin{pmatrix} 0 & i & e^{\frac{i\pi}{4}} \\ -i & 0 & e^{\frac{i\pi}{3}} \\ e^{-\frac{i\pi}{4}} & e^{-\frac{i\pi}{3}} & 0 \end{pmatrix} A(\Phi_2) = \begin{pmatrix} 0 & e^{\frac{i\pi}{3}} & e^{\frac{i\pi}{6}} \\ e^{-\frac{i\pi}{3}} & 0 & 1 \\ e^{-\frac{i\pi}{6}} & 1 & 0 \end{pmatrix}$$

A_{α} -matrix of \mathbb{T} -gain graph

A_{α} -matrix of \mathbb{T} -gain graph

• Nikiforov introduced A_{α} -matrix of a graph *G*. In an unified approach, A_{α} -matrix of a \mathbb{T} -gain graph Φ is defined as follows:

$$A_{\alpha}(\Phi) = \alpha D(\Phi) + (1 - \alpha)A(\Phi), \quad \alpha \in [0, 1].$$

It is obvious that $A_0(\Phi) = A(\Phi)$.

ヨトィヨト

A_{α} -matrix of \mathbb{T} -gain graph

 Nikiforov introduced A_α-matrix of a graph G. In an unified approach, A_α-matrix of a T-gain graph Φ is defined as follows:

$$A_{\alpha}(\Phi) = \alpha D(\Phi) + (1 - \alpha)A(\Phi), \quad \alpha \in [0, 1].$$

It is obvious that $A_0(\Phi) = A(\Phi)$.

• Let $m_{\alpha}(\Phi, \lambda)$ denotes the *multiplicity of* λ as an eigenvalue of $A_{\alpha}(\Phi)$, for $\alpha \in [0, 1)$.

Particularly, $m_0(\Phi, 0) = \eta(\Phi)$.

<ロ> <同> <同> < 回> < 回> < 回> = 回

A(G) Undirected graph

<ロ> <同> <同> < 回> < 回> < 回> = 三回

・ロト ・回ト ・ヨト ・ヨト

æ.

Literature survey

★ 문 → ★ 문 →

How is $m_{\alpha}(\Phi, \lambda)$ related to *n* and Δ ?

(1) For undirected Tree T, $\eta(T) \le n - 2\lceil \frac{n-2}{\Delta} \rceil$, with characterization of equality. Stanley Fiorini, Ivan Gutman, Irene Sciriha, *Linear Algebra Appl. 2005*

(1) For undirected Tree T, $\eta(T) \le n - 2\lceil \frac{n-2}{\Delta} \rceil$, with characterization of equality. Stanley Fiorini, Ivan Gutman, Irene Sciriha, *Linear Algebra Appl. 2005*

(2) For bipartite graph G, η(G) ≤ n − 2 − 2ln₂Δ
 Y.Song, X. Song, C. Zhang, *Linear Multilinear Algebra. 2016.*

- (1) For undirected Tree T, $\eta(T) \le n 2\lceil \frac{n-2}{\Delta} \rceil$, with characterization of equality. Stanley Fiorini, Ivan Gutman, Irene Sciriha, *Linear Algebra Appl. 2005*
- (2) For bipartite graph G, η(G) ≤ n − 2 − 2ln₂Δ
 Y.Song, X. Song, C. Zhang, *Linear Multilinear Algebra. 2016.*
- (3) For undirected graph G, η(G) ≤ (Δ−1)n/Δ with characterization of equality. Qi Zhou, Dein Wong, Dongqin Sun, *Linear Algebra Appl. 2018*

- (1) For undirected Tree T, $\eta(T) \le n 2\lceil \frac{n-2}{\Delta} \rceil$, with characterization of equality. Stanley Fiorini, Ivan Gutman, Irene Sciriha, *Linear Algebra Appl. 2005*
- (2) For bipartite graph G, η(G) ≤ n − 2 − 2ln₂Δ
 Y.Song, X. Song, C. Zhang, *Linear Multilinear Algebra. 2016.*

 (3) For undirected graph G, η(G) ≤ (Δ−1)n/Δ with characterization of equality. Qi Zhou, Dein Wong, Dongqin Sun, *Linear Algebra Appl. 2018*

- (4) For connected graph G, $\eta(G) \leq \frac{(\Delta-2)n+2}{\Delta-1}$, with characterization of equality.
 - Zhi Wen Wang, Ji Ming Guo, Linear Algebra Appl. 2019
 - Wanting Sun, Shuchao Li, Linear Algebra Appl. 2019
 - Bo Chenga, Muhuo Liub, Bolian Liud, Linear Algebra Appl. 2019
 - Long Wang, Xianya Geng, Journal of Graph Theory 2020

・ロ ・ ・ 回 ・ ・ 回 ・ ・ 日 ・

 Nullity is the multiplicity of zero eigenvalue. Now, we are looking for multiplicity of any arbitrary eigenvalue.

- Nullity is the multiplicity of zero eigenvalue. Now, we are looking for multiplicity of any arbitrary eigenvalue.
- Since A(G) is a particular case of $A_{\alpha}(G)$, so we consider $A_{\alpha}(G)$.

- Nullity is the multiplicity of zero eigenvalue. Now, we are looking for multiplicity of any arbitrary eigenvalue.
- Since A(G) is a particular case of $A_{\alpha}(G)$, so we consider $A_{\alpha}(G)$.

One immediate result.

(5) Let $m_{\alpha}(G, \lambda)$ be the multiplicity of λ as an eigenvalue of $A_{\alpha}(G)$. Then

$$m_{lpha}(G,\lambda) \leq rac{(\Delta-2)n+2}{\Delta-1}, \,\,$$
 with characterization of equality.

Long Wanga, Xianwen Fanga, Xianya Genga, Fenglei Tianb, *Linear Algebra Appl. 2019*

Remark: $m_0(G, 0) = \eta(G)$, above result is a generalization.

- Let $\Phi = (G, \varphi)$ be a connected \mathbb{T} -gain graph.
- $A(\Phi)$ and $D(\Phi)$ are the *adjacency matrix* and *degree matrix* of Φ , respectively.
- Then $A_{\alpha}(\Phi) := \alpha D(\Phi) + (1 \alpha)A(\Phi)$, for $\alpha \in [0, 1]$.
- $m_{\alpha}(\Phi, \lambda)$ is the multiplicity of λ as an eigenvalue of $A_{\alpha}(\Phi)$, where $\alpha \in [0, 1)$.
- It is clear that $m_0(\Phi, 0) = \eta(\Phi)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

- Let $\Phi = (G, \varphi)$ be a connected \mathbb{T} -gain graph.
- $A(\Phi)$ and $D(\Phi)$ are the *adjacency matrix* and *degree matrix* of Φ , respectively.
- Then $A_{\alpha}(\Phi) := \alpha D(\Phi) + (1 \alpha)A(\Phi)$, for $\alpha \in [0, 1]$.
- $m_{\alpha}(\Phi, \lambda)$ is the **multiplicity of** λ as an eigenvalue of $A_{\alpha}(\Phi)$, where $\alpha \in [0, 1)$.
- It is clear that $m_0(\Phi, 0) = \eta(\Phi)$.

(6) For T-gain graph Φ, η(Φ) ≤ (Δ-1)n/Δ, with characterization of equality.
 Yong Lu, Jingwen Wu, *Linear Algebra Appl. 2020*

・ロト ・回ト ・ヨト ・ヨト … ヨ

э

イロト イヨト イヨト イヨト

Our Contribution

Theorem (A. Samanta, M. Rajesh Kannan, 2021)

Let $\Phi = (G, \varphi)$ be a connected \mathbb{T} -gain graph of n vertices with maximum vertex degree $\Delta \geq 2$. If $m_{\alpha}(\Phi, \lambda)$ is the multiplicity of λ as an A_{α} -eigenvalue of Φ , where $\alpha \in [0, 1)$, then

$$m_{\alpha}(\Phi,\lambda) \leq \frac{(\Delta-2)n+2}{(\Delta-1)}.$$
 (1)

Theorem (A. Samanta, M. Rajesh Kannan, 2021)

Let $\Phi = (G, \varphi)$ be a connected \mathbb{T} -gain graph of n vertices with maximum vertex degree $\Delta \geq 2$. If $m_{\alpha}(\Phi, \lambda)$ is the multiplicity of λ as an A_{α} -eigenvalue of Φ , where $\alpha \in [0, 1)$, then

$$m_{\alpha}(\Phi,\lambda) \leq \frac{(\Delta-2)n+2}{(\Delta-1)}.$$
 (1)

Charecterization (A. Samanta, M. Rajesh Kannan, 2021)

Equality occurs in (1) if and only if one of the following holds:

(i)
$$\Phi \sim (K_{\frac{n}{2},\frac{n}{2}}, 1)$$
 and $\lambda = \frac{\alpha n}{2}$.
(ii) $\Phi = (C_n, \varphi)$ with $\varphi(C_n) = 1$ and
 $\lambda \in \left\{ 2\alpha + 2(1-\alpha)\cos\left(\frac{2\pi j}{n}\right) : j = 0, 1, \dots, \lceil \frac{n}{2} \rceil - 1 \right\}$.
(iii) $\Phi = (C_n, \varphi)$ with $\varphi(C_n) = -1$ and
 $\lambda \in \left\{ 2\alpha + 2(1-\alpha)\cos\left(\frac{(2j+1)\pi}{n}\right) : j = 0, 1, \dots, \lfloor \frac{n}{2} \rfloor - 1 \right\}$.
(iv) $\Phi = (K_n, \varphi)$ with $\mu \in \sigma(\Phi)$ has multiplicity $(n-1)$ and $\lambda = \alpha(n-1) + (1-\alpha)\mu$.

The following are the main significance of the above Theorem.

• Particular case of the above Theorem improve the Result (6).

The following are the main significance of the above Theorem.

- Particular case of the above Theorem improve the Result (6).
- The above Theorem extend the Result (5) for \mathbb{T} -gain graphs.

< ⊒ >

The following are the main significance of the above Theorem.

- Particular case of the above Theorem improve the Result (6).
- The above Theorem extend the Result (5) for \mathbb{T} -gain graphs.
- Particular case of the above Theorem simplify the proof of the Result (5).
Sketch of the Proof

Let $\Phi = (G, \varphi)$ be a connected \mathbb{T} -gain graph with vertices $V(\Phi) = \{v_1, v_2, \cdots, v_n\}$ and maximum vertex degree $\Delta \ge 2$.

Sketch of the Proof

Let $\Phi = (G, \varphi)$ be a connected \mathbb{T} -gain graph with vertices $V(\Phi) = \{v_1, v_2, \cdots, v_n\}$ and maximum vertex degree $\Delta \ge 2$.

• Key ideas: **Zero forcing number** *Z*(*G*)

The notion of a zero-forcing set of a simple graph *G* was introduced in AIM Minimum Rank-Special Graphs Work Group, *Linear Algebra Appl. 2008*.

The notion of a zero-forcing set of a simple graph *G* was introduced in AIM Minimum Rank-Special Graphs Work Group, *Linear Algebra Appl. 2008*.

• **Color-change rule:** Let *G* be a simple graph such that each vertex of *G* is colored either black or red. Suppose vertex *v_i* is a black vertex and exactly one neighbor *v_j* of *v_i* is red among all other neighbors. Then change the color of *v_i* to black.

The notion of a zero-forcing set of a simple graph *G* was introduced in AIM Minimum Rank-Special Graphs Work Group, *Linear Algebra Appl. 2008*.

- **Color-change rule:** Let *G* be a simple graph such that each vertex of *G* is colored either black or red. Suppose vertex *v_i* is a black vertex and exactly one neighbor *v_j* of *v_i* is red among all other neighbors. Then change the color of *v_i* to black.
- The *derived coloring* of a given coloring of *G* is the resulting coloring after applying the color-change rule such that no more changes are possible.

The notion of a zero-forcing set of a simple graph *G* was introduced in AIM Minimum Rank-Special Graphs Work Group, *Linear Algebra Appl. 2008*.

- **Color-change rule:** Let *G* be a simple graph such that each vertex of *G* is colored either black or red. Suppose vertex *v_i* is a black vertex and exactly one neighbor *v_j* of *v_i* is red among all other neighbors. Then change the color of *v_i* to black.
- The *derived coloring* of a given coloring of *G* is the resulting coloring after applying the color-change rule such that no more changes are possible.
- A subset *Z* of the vertex set of *G* is called a *zero forcing set* of *G*, if initially the vertices of *Z* are all colored black and the remaining vertices are colored red, the derived coloring of *G* are all black.

Counter example of zero forcing set

・ロト・日本・日本・日本・日本・日本

・ロト・日本・日本・日本・日本・日本

Derived coloring

<ロ> (四) (四) (三) (三) (三)

Example of Zero forcing set

< ⊒ >

◆□ > ◆母 > ◆母 > ◆母 > ● ● ● ● ●

・ロト・日本・日本・日本・日本・日本

・ロト・日本・日本・日本・日本・日本

・ロ・・ロ・・ロ・・ロ・・ロ・

(日) (월) (문) (문) [

イロン イヨン イヨン

Zero forcing number:

$$Z(G) := \min_{Z} |Z|$$
 over all zero forcing set Z

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●
Zero forcing number: $Z(G) := \min_{Z} |Z|$ over all zero forcing set Z

Let us present the following immediate result.

(6) For any connected *G* with $\Delta \ge 2$,

$$Z(G) \leq \frac{(\Delta-2)n+2}{(\Delta-1)}$$

Equality occur if and only if G is either C_n , or K_n , or $K_{\frac{n}{2},\frac{n}{2}}$.

Michael Gentner at el., Discrete Appl. Math 2016.

Let $\Phi = (G, \varphi)$ be a connected \mathbb{T} -gain graph with vertices $V(\Phi) = \{v_1, v_2, \dots, v_n\}$ and maximum vertex degree Δ .

• Key ideas: **Zero forcing number** Z(G), $Z(G) \leq \frac{(\Delta-2)n+2}{(\Delta-1)}$

<ロ> <同> <同> < 回> < 回> < 回> = 三

Let $\Phi = (G, \varphi)$ be a connected \mathbb{T} -gain graph with vertices $V(\Phi) = \{v_1, v_2, \dots, v_n\}$ and maximum vertex degree Δ .

- Key ideas: **Zero forcing number** Z(G), $Z(G) \leq \frac{(\Delta-2)n+2}{(\Delta-1)}$
- Define $M(\Phi) := \max\{\eta(B) : B \in \mathcal{H}(\Phi)\}.$

<ロ> <同> <同> < 回> < 回> < 回> = 三

Let H_n denote the set of all Hermitian matrices of order n.

Let H_n denote the set of all Hermitian matrices of order *n*. For $B \in H_n$, define the matrix $\mathcal{G}(B)$ as follows:

Let H_n denote the set of all Hermitian matrices of order *n*. For $B \in H_n$, define the matrix $\mathcal{G}(B)$ as follows:

$$\mathcal{G}(B)_{ij} = \begin{cases} rac{B_{ij}}{|B_{ij}|} & ext{if } B_{ij}
eq 0, \\ 0 & ext{otherwise}. \end{cases}$$

I ∃ →

Let H_n denote the set of all Hermitian matrices of order *n*. For $B \in H_n$, define the matrix $\mathcal{G}(B)$ as follows:

$$\mathcal{G}(B)_{ij} = egin{cases} rac{B_{ij}}{|B_{ij}|} & ext{if } B_{ij}
eq 0, \ 0 & ext{otherwise}. \end{cases}$$

Let $\Phi = (G, \varphi)$ be any \mathbb{T} -gain graph of *n* vertices.

ヨトィヨト

Let H_n denote the set of all Hermitian matrices of order *n*. For $B \in H_n$, define the matrix $\mathcal{G}(B)$ as follows:

$$\mathcal{G}(B)_{ij} = egin{cases} rac{B_{ij}}{|B_{ij}|} & ext{if } B_{ij}
eq 0, \ 0 & ext{otherwise}. \end{cases}$$

Let $\Phi = (G, \varphi)$ be any \mathbb{T} -gain graph of *n* vertices.

A matrix $B = (B_{ij}) \in H_n$ is a *matrix of type* Φ if $\mathcal{G}(B)_{ij} = A(\Phi)_{ij}$ for all $i \neq j$.

Let H_n denote the set of all Hermitian matrices of order *n*. For $B \in H_n$, define the matrix $\mathcal{G}(B)$ as follows:

$$\mathcal{G}(B)_{ij} = egin{cases} rac{B_{ij}}{|B_{ij}|} & ext{if } B_{ij}
eq 0, \ 0 & ext{otherwise}. \end{cases}$$

Let $\Phi = (G, \varphi)$ be any \mathbb{T} -gain graph of *n* vertices.

A matrix $B = (B_{ij}) \in H_n$ is a *matrix of type* Φ if $\mathcal{G}(B)_{ij} = A(\Phi)_{ij}$ for all $i \neq j$. $\mathcal{H}(\Phi) := \{B \in H_n : B \text{ is of type } \Phi\}.$

Let H_n denote the set of all Hermitian matrices of order *n*. For $B \in H_n$, define the matrix $\mathcal{G}(B)$ as follows:

$$\mathcal{G}(B)_{ij} = egin{cases} rac{B_{ij}}{|B_{ij}|} & ext{if } B_{ij}
eq 0, \ 0 & ext{otherwise}. \end{cases}$$

Let $\Phi = (G, \varphi)$ be any \mathbb{T} -gain graph of *n* vertices.

A matrix $B = (B_{ij}) \in H_n$ is a *matrix of type* Φ if $\mathcal{G}(B)_{ij} = A(\Phi)_{ij}$ for all $i \neq j$.

 $\mathcal{H}(\Phi) := \{ B \in H_n : B \text{ is of type } \Phi \}.$

Let $\eta(B)$ be the nullity of the matrix B.

Define $M(\Phi) := \max\{\eta(B) : B \in \mathcal{H}(\Phi)\}.$

Particularly, $\eta(A(\Phi)) \leq M(\Phi)$.

マロト イヨト イヨト 三日

- Key ideas: Zero forcing number Z(G), $Z(G) \leq \frac{(\Delta-2)n+2}{(\Delta-1)}$
- Define $M(\Phi) := \max\{\eta(B) : B \in \mathcal{H}(\Phi)\}$, then $\eta(B) \le M(\Phi)$, where B is of type Φ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

- Key ideas: Zero forcing number Z(G), $Z(G) \leq \frac{(\Delta-2)n+2}{(\Delta-1)}$
- Define $M(\Phi) := \max\{\eta(B) : B \in \mathcal{H}(\Phi)\}$, then $\eta(B) \le M(\Phi)$, where B is of type Φ .
- Then $M(\Phi) \leq Z(G)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Lemma 1

Let Φ be any \mathbb{T} -gain graph, and Z be a zero forcing set of Φ . Let $B \in \mathcal{H}(\Phi)$ and $y \in Ker B$ with $supp(y) \cap Z = \phi$. Then y = 0.

Lemma 1

Let Φ be any \mathbb{T} -gain graph, and Z be a zero forcing set of Φ . Let $B \in \mathcal{H}(\Phi)$ and $y \in Ker B$ with $supp(y) \cap Z = \phi$. Then y = 0.

Proof: Let $V(\Phi)$ be the vertex set of Φ . If $Z = V(\Phi)$, then y = 0.

Lemma 1

Let Φ be any \mathbb{T} -gain graph, and Z be a zero forcing set of Φ . Let $B \in \mathcal{H}(\Phi)$ and $y \in Ker B$ with $supp(y) \cap Z = \phi$. Then y = 0.

Proof: Let $V(\Phi)$ be the vertex set of Φ . If $Z = V(\Phi)$, then y = 0. Suppose $Z \subset V(\Phi)$. Since Z is a zero forcing set, so all the white vertices in $V(\Phi) \setminus Z$ can be colored black by color change rule. Let $v_i \in Z$ be such that it has exactly one red neighbour vertex v_t .

ヘロト 人間 とくほ とくほう

Lemma 1

Let Φ be any \mathbb{T} -gain graph, and Z be a zero forcing set of Φ . Let $B \in \mathcal{H}(\Phi)$ and $y \in Ker B$ with $supp(y) \cap Z = \phi$. Then y = 0.

Proof: Let $V(\Phi)$ be the vertex set of Φ . If $Z = V(\Phi)$, then y = 0.

Suppose $Z \subset V(\Phi)$. Since Z is a zero forcing set, so all the white vertices in $V(\Phi) \setminus Z$ can be colored black by color change rule. Let $v_i \in Z$ be such that it has exactly one red neighbour vertex v_t .

Then the *i*-th entry $(By)_i = B_{ii}y_i + \sum_{v_i \sim v_j} B_{ij}y_j = B_{it}y_t = 0$. Then $y_t = 0$. As Z is a zero

forcing set, so all the components of y associated with white vertices are zero. Hence y = 0.

Remark: Significance of the name " Zero forcing set "

・ロン ・回 と ・ ヨン ・ ヨ

(7) Let *B* be any square matrix on some field with $\eta(B) > s$. Then there exists a non-zero vector $y \in Ker(B)$ vanishing at *s* specified positions.

AIM Minimum Rank-Special Graphs Work Group, Linear Algebra Appl. 2008

(7) Let *B* be any square matrix on some field with $\eta(B) > s$. Then there exists a non-zero vector $y \in Ker(B)$ vanishing at *s* specified positions.

AIM Minimum Rank-Special Graphs Work Group, Linear Algebra Appl. 2008

Lemma 2

Let $\Phi = (G, \varphi)$ be any \mathbb{T} -gain graph. Then $M(\Phi) \leq Z(G)$.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

(7) Let *B* be any square matrix on some field with $\eta(B) > s$. Then there exists a non-zero vector $y \in Ker(B)$ vanishing at *s* specified positions.

AIM Minimum Rank-Special Graphs Work Group, Linear Algebra Appl. 2008

Lemma 2

Let $\Phi = (G, \varphi)$ be any \mathbb{T} -gain graph. Then $M(\Phi) \leq Z(G)$.

Proof: Let Z be a zero forcing set of Φ .

4 日 2 4 同 2 4 日 2 4 日 2 4

(7) Let *B* be any square matrix on some field with $\eta(B) > s$. Then there exists a non-zero vector $y \in Ker(B)$ vanishing at *s* specified positions.

AIM Minimum Rank-Special Graphs Work Group, Linear Algebra Appl. 2008

Lemma 2

Let $\Phi = (G, \varphi)$ be any \mathbb{T} -gain graph. Then $M(\Phi) \leq Z(G)$.

Proof: Let *Z* be a zero forcing set of Φ . Suppose that $M(\Phi) > |Z|$.

ヘロト ヘポト ヘヨト ヘヨト

(7) Let *B* be any square matrix on some field with $\eta(B) > s$. Then there exists a non-zero vector $y \in Ker(B)$ vanishing at *s* specified positions.

AIM Minimum Rank-Special Graphs Work Group, Linear Algebra Appl. 2008

Lemma 2

Let $\Phi = (G, \varphi)$ be any \mathbb{T} -gain graph. Then $M(\Phi) \leq Z(G)$.

Proof: Let *Z* be a zero forcing set of Φ . Suppose that $M(\Phi) > |Z|$. Then there exists a matrix $B \in \mathcal{H}(\Phi)$ such that $\eta(B) > |Z|$. Therefore, by above result, there exist a nonzero $y \in Ker(B)$ such that $supp(y) \cap Z = \phi$.

<ロ> < 回 > < 回 > < 回 > < 回 > - < 回 > - <

(7) Let *B* be any square matrix on some field with $\eta(B) > s$. Then there exists a non-zero vector $y \in Ker(B)$ vanishing at *s* specified positions.

AIM Minimum Rank-Special Graphs Work Group, Linear Algebra Appl. 2008

Lemma 2

Let $\Phi = (G, \varphi)$ be any \mathbb{T} -gain graph. Then $M(\Phi) \leq Z(G)$.

Proof: Let *Z* be a zero forcing set of Φ . Suppose that $M(\Phi) > |Z|$. Then there exists a matrix $B \in \mathcal{H}(\Phi)$ such that $\eta(B) > |Z|$. Therefore, by above result, there exist a nonzero $y \in Ker(B)$ such that $supp(y) \cap Z = \phi$. By Lemma 1, we get y = 0, a contradiction. Thus $M(\Phi) \le |Z|$, and hence $M(\Phi) \le Z(G)$.

イロン イヨン イヨン ・ ヨン

- Key ideas: Zero forcing number Z(G), $Z(G) \le \frac{(\Delta-2)n+2}{(\Delta-1)}$
- Define $M(\Phi) := \max\{\eta(B) : B \in \mathcal{H}(\Phi)\}$, then $\eta(B) \le M(\Phi)$, where B is of type Φ .
- Then $M(\Phi) \leq Z(G)$

- Key ideas: Zero forcing number Z(G), $Z(G) \leq \frac{(\Delta-2)n+2}{(\Delta-1)}$
- Define $M(\Phi) := \max\{\eta(B) : B \in \mathcal{H}(\Phi)\}$, then $\eta(B) \le M(\Phi)$, where B is of type Φ .
- Then $M(\Phi) \leq Z(G)$
- For $\alpha \in [0, 1)$, $A_{\alpha}(\Phi) = \alpha D(\Phi) + (1 \alpha)A(\Phi)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

- Key ideas: Zero forcing number Z(G), $Z(G) \leq \frac{(\Delta-2)n+2}{(\Delta-1)}$
- Define $M(\Phi) := \max\{\eta(B) : B \in \mathcal{H}(\Phi)\}$, then $\eta(B) \le M(\Phi)$, where B is of type Φ .
- Then $M(\Phi) \leq Z(G)$
- For $\alpha \in [0, 1)$, $A_{\alpha}(\Phi) = \alpha D(\Phi) + (1 \alpha)A(\Phi)$. Let $\lambda \in \sigma(A_{\alpha}(\Phi))$. Consider $B := (A_{\alpha}(\Phi) - \lambda I)$. Therefore $\eta(B) = m_{\alpha}(\Phi, \lambda)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

- Key ideas: Zero forcing number Z(G), $Z(G) \leq \frac{(\Delta-2)n+2}{(\Delta-1)}$
- Define $M(\Phi) := \max\{\eta(B) : B \in \mathcal{H}(\Phi)\}$, then $\eta(B) \le M(\Phi)$, where B is of type Φ .
- Then $M(\Phi) \leq Z(G)$
- For $\alpha \in [0, 1)$, $A_{\alpha}(\Phi) = \alpha D(\Phi) + (1 \alpha)A(\Phi)$. Let $\lambda \in \sigma(A_{\alpha}(\Phi))$. Consider $B := (A_{\alpha}(\Phi) - \lambda I)$. Therefore $\eta(B) = m_{\alpha}(\Phi, \lambda)$. Now $\mathcal{G}(B)_{ij} = \frac{B_{ij}}{|B_{ij}|} = \frac{(1 - \alpha)A(\Phi)_{ij}}{|(1 - \alpha)||A(\Phi)_{ij}|} = A(\Phi)_{ij}$, for $i \neq j$ and $\alpha \in [0, 1)$. Thus $B \in \mathcal{H}(\Phi)$.

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 のへの

- Key ideas: Zero forcing number Z(G), $Z(G) \leq \frac{(\Delta-2)n+2}{(\Delta-1)}$
- Define $M(\Phi) := \max\{\eta(B) : B \in \mathcal{H}(\Phi)\}$, then $\eta(B) \le M(\Phi)$, where B is of type Φ .
- Then $M(\Phi) \leq Z(G)$
- For $\alpha \in [0, 1)$, $A_{\alpha}(\Phi) = \alpha D(\Phi) + (1 \alpha)A(\Phi)$. Let $\lambda \in \sigma(A_{\alpha}(\Phi))$. Consider $B := (A_{\alpha}(\Phi) - \lambda I)$. Therefore $\eta(B) = m_{\alpha}(\Phi, \lambda)$. Now $\mathcal{G}(B)_{ij} = \frac{B_{ij}}{|B_{ij}|} = \frac{(1 - \alpha)A(\Phi)_{ij}}{|(1 - \alpha)||A(\Phi)_{ij}|} = A(\Phi)_{ij}$, for $i \neq j$ and $\alpha \in [0, 1)$. Thus $B \in \mathcal{H}(\Phi)$.

Therefore, $\eta(B) \leq M(\Phi)$. Combining all

$$m_{\alpha}(\Phi,\lambda) = \eta(B) \leq M(\Phi) \leq Z(G) \leq rac{(\Delta-2)n+2}{\Delta-1}$$

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 のへの

If $m_{\alpha}(\Phi, \lambda) = \frac{(\Delta-2)n+2}{\Delta-1}$, then $Z(G) = \frac{(\Delta-2)n+2}{\Delta-1}$. By result (6), G is either $K_{\frac{n}{2},\frac{n}{2}}$ or K_n or C_n .

If $m_{\alpha}(\Phi, \lambda) = \frac{(\Delta-2)n+2}{\Delta-1}$, then $Z(G) = \frac{(\Delta-2)n+2}{\Delta-1}$. By result (6), G is either $K_{\frac{n}{2},\frac{n}{2}}$ or K_n or C_n .

Case 1: Suppose $\Phi = (K_{\frac{n}{2},\frac{n}{2}},\varphi)$. Then $m_{\alpha}(\Phi,\lambda) = \frac{(\Delta-2)n+2}{\Delta-1} = n-2$. Therefore, there is an eigenvalue μ of $A(\Phi)$ with multiplicity (n-2) such that $\lambda = \frac{\alpha n}{2} + (1-\alpha)\mu$.

If $m_{\alpha}(\Phi, \lambda) = \frac{(\Delta-2)n+2}{\Delta-1}$, then $Z(G) = \frac{(\Delta-2)n+2}{\Delta-1}$. By result (6), G is either $K_{\frac{n}{2},\frac{n}{2}}$ or K_n or C_n .

Case 1: Suppose $\Phi = (K_{\frac{n}{2},\frac{n}{2}},\varphi)$. Then $m_{\alpha}(\Phi,\lambda) = \frac{(\Delta-2)n+2}{\Delta-1} = n-2$. Therefore, there is an eigenvalue μ of $A(\Phi)$ with multiplicity (n-2) such that $\lambda = \frac{\alpha n}{2} + (1-\alpha)\mu$.

• Since Φ is bipartite, the eigenvalues are symmetric about origin.

If $m_{\alpha}(\Phi, \lambda) = \frac{(\Delta-2)n+2}{\Delta-1}$, then $Z(G) = \frac{(\Delta-2)n+2}{\Delta-1}$. By result (6), G is either $K_{\frac{n}{2},\frac{n}{2}}$ or K_n or C_n .

Case 1: Suppose $\Phi = (K_{\frac{n}{2},\frac{n}{2}},\varphi)$. Then $m_{\alpha}(\Phi,\lambda) = \frac{(\Delta-2)n+2}{\Delta-1} = n-2$. Therefore, there is an eigenvalue μ of $A(\Phi)$ with multiplicity (n-2) such that $\lambda = \frac{\alpha n}{2} + (1-\alpha)\mu$.

- Since Φ is bipartite, the eigenvalues are symmetric about origin.
- Then $\mu = 0$. Therefore $r(\Phi) = 2$
- Let (C_4, φ) be an induced 4-cycle in Φ .

•
$$2 \le r(C_4, \varphi) \le r(\Phi) = 2$$
, so $r(C_4, \varphi) = 2$.

・ロト ・回ト ・ヨト ・ ヨト … ヨ

If $m_{\alpha}(\Phi, \lambda) = \frac{(\Delta-2)n+2}{\Delta-1}$, then $Z(G) = \frac{(\Delta-2)n+2}{\Delta-1}$. By result (6), G is either $K_{\frac{n}{2},\frac{n}{2}}$ or K_n or C_n .

Case 1: Suppose $\Phi = (K_{\frac{n}{2},\frac{n}{2}},\varphi)$. Then $m_{\alpha}(\Phi,\lambda) = \frac{(\Delta-2)n+2}{\Delta-1} = n-2$. Therefore, there is an eigenvalue μ of $A(\Phi)$ with multiplicity (n-2) such that $\lambda = \frac{\alpha n}{2} + (1-\alpha)\mu$.

- Since Φ is bipartite, the eigenvalues are symmetric about origin.
- Then $\mu = 0$. Therefore $r(\Phi) = 2$
- Let (C_4, φ) be an induced 4-cycle in Φ .

•
$$2 \leq r(C_4, \varphi) \leq r(\Phi) = 2$$
, so $r(C_4, \varphi) = 2$.

- Then $\varphi(C_4) = 1$. Therefore, any 4-cycle in Φ is neutral.
- Let us take an arbitrary cycle $C_{2k} \equiv v_1 v_2 \cdots v_{2k}$.

Case 1: Suppose $\Phi = (K_{\frac{n}{2},\frac{n}{2}},\varphi)$. Then $m_{\alpha}(\Phi,\lambda) = \frac{(\Delta-2)n+2}{\Delta-1} = n-2$. Therefore, there is an eigenvalue μ of $A(\Phi)$ with multiplicity (n-2) such that $\lambda = \frac{\alpha n}{2} + (1-\alpha)\mu$.

- Since Φ is bipartite, the eigenvalues are symmetric about origin.
- Then $\mu = 0$. Therefore $r(\Phi) = 2$
- Let (C_4, φ) be an induced 4-cycle in Φ .
- $2 \leq r(C_4, \varphi) \leq r(\Phi) = 2$, so $r(C_4, \varphi) = 2$.
- Then $\varphi(C_4) = 1$. Therefore, any 4-cycle in Φ is neutral.
- Let us take an arbitrary cycle $C_{2k} \equiv v_1 v_2 \cdots v_{2k}$.

$$\varphi(\overrightarrow{C_{2k}}) = \varphi(\overrightarrow{e_{1,2}})\varphi(\overrightarrow{e_{2,3}})\cdots\varphi(\overrightarrow{e_{(2k-1),2k}})$$
$$= \{\varphi(\overrightarrow{e_{1,2}})\varphi(\overrightarrow{e_{2,3}})\varphi(\overrightarrow{e_{3,4}})\varphi(\overrightarrow{e_{4,1}})\}$$
$$\{\varphi(\overrightarrow{e_{1,4}})\varphi(\overrightarrow{e_{4,5}})\varphi(\overrightarrow{e_{5,6}})\varphi(\overrightarrow{e_{6,1}})\}$$

:

$$\{\varphi(\overrightarrow{e_{1,(2k-2)}})\varphi(\overrightarrow{e_{(2k-2),(2k-1)}})\varphi(\overrightarrow{e_{(2k-1),2k}})\varphi(\overrightarrow{e_{2k,1}})\}$$

= 1.

Therefore $\Phi \sim (K_{\frac{n}{2},\frac{n}{2}}, 1)$ and $\lambda = \frac{\alpha n}{2}$. Thus statement (*i*) holds.

回 と く ヨ と く ヨ と … ヨ

Case 2: Suppose $\Phi = (K_n, \varphi)$ and $m_{\alpha}(\Phi, \lambda) = \frac{(\Delta-2)n+2}{\Delta-1}$. Then $m_{\alpha}(\Phi, \lambda) = n-1$. Therefore, λ is an eigenvalue of $A_{\alpha}(\Phi)$ with multiplicity (n-1). Therefore, $A(\Phi)$ has an eigenvalue μ with multiplicity (n-1). Statement (*ii*) holds.

Case 3: Suppose $\Phi = (C_n, \varphi)$ and $m_{\alpha}(\Phi, \lambda) = \frac{(\Delta-2)n+2}{\Delta-1}$. Then $m_{\alpha}(\Phi, \lambda) = 2$. Therefore by some known results, either statement (*iii*) or statement (*iv*) holds.
Another improved bound:

Theorem (A. Samanta, M. Rajesh Kannan, 2021)

Let Φ be any connected \mathbb{T} -gain graph with n vertices and the maximum vertex degree $\Delta \geq 3$. Then

$$\eta(\Phi) \leq rac{n(\Delta-2)}{\Delta-1}$$

equality holds if and only if $\Phi \notin \{(K_{\frac{n}{2},\frac{n}{2}},1),(K_{\frac{n+1}{2},\frac{n-1}{2}},1)\}.$

Problem

One can consider a problem to find better bound of $\eta(G)$ in terms of *n* and Δ by excluding some particular graphs.

References I

AIM Minimum Rank-Special Graphs Work Group, *Zero forcing sets and the minimum rank of graphs*, Linear Algebra Appl. **428** (2008), no. 7, 1628–1648. MR 2388646

Yong Lu and Jingwen Wu, *Bounds for the rank of a complex unit gain graph in terms of its maximum degree*, Linear Algebra Appl. **610** (2021), 73–85. MR 4159284

V. Nikiforov, *Merging the A- and Q-spectral theories*, Appl. Anal. Discrete Math. **11** (2017), no. 1, 81–107. MR 3648656

Nathan Reff, *Spectral properties of complex unit gain graphs*, Linear Algebra Appl. **436** (2012), no. 9, 3165–3176. MR 2900705

Aniruddha Samanta and M. Rajesh Kannan, On the multiplicity of A_{α} -eigenvalues and the rank of complex unit gain graphs, arXiv preprint arXiv:2101.03752 (2021).

Wanting Sun and Shuchao Li, *A short proof of Zhou, Wong and Sun's conjecture*, Linear Algebra Appl. **589** (2020), 80–84. MR 4045263

Long Wang, Xianwen Fang, Xianya Geng, and Fenglei Tian, *On the multiplicity of an arbitrary* A_{α} -*eigenvalue of a connected graph*, Linear Algebra Appl. **589** (2020), 28–38. MR 4044756

Long Wang and Xianya Geng, *Proof of a conjecture on the nullity of a graph*, J. Graph Theory **95** (2020), no. 4, 586–593. MR 4174131

Thomas Zaslavsky, *Biased graphs. I. Bias, balance, and gains*, J. Combin. Theory Ser. B **47** (1989), no. 1, 32–52. MR 1007712

<ロ> <同> <同> <同> < 同> < 同>

Thank You